首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以制备的MOF@TiN-Ag/银溶胶复合基底为表面增强拉曼光谱(SERS)活性基底,对茶碱进行SERS检测,探讨了基于该复合基底的表面增强拉曼技术在药物检测方面的应用。首先,利用电化学阳极氧化结合氨气还原氮化法制备了氮化钛纳米管阵列,随后通过电化学沉积法制备TiN-Ag复合基底,并在其表面原位生长金属有机框架(MOF)包覆层得到MOF@TiN-Ag复合基底,将茶碱与银溶胶混合后滴加在该复合基底上进行表面增强拉曼光谱检测。结果表明,MOF@TiN-Ag/银溶胶复合基底中存在面心立方晶型TiN、金属单质Ag和MOF钴基3种物相;扫描电镜结果显示,TiN纳米管排列整齐,Ag纳米结构呈树枝状均匀分散在其表面;作为隔绝层的MOF粒子形状规整,覆盖在TiN-Ag表面;银溶胶纳米粒子呈圆球状分布在MOF@TiN-Ag复合基底表面。由于银纳米粒子与TiN-Ag复合基底可发生协同增强作用,加之MOF的富集特性,使得该复合基底具有优异的SERS性能,其对茶碱溶液的SERS检出限为1×10-5 mol/L,检测性能良好。所制备的MOF@TiNAg/银溶胶复合基底拓宽了SERS在药物检测...  相似文献   

2.
SERS活性光纤光谱微探针研究   总被引:2,自引:0,他引:2  
用真空蒸镀银岛膜和银溶胶自组装膜两种方法对光纤探针进行表面增强拉曼(SERS)活性修饰,构造了圆锥型SERS活性光纤光谱微探针.选取几个有代表性的分子作为检测样品,得到了低浓度样品的SERS光谱,对样品BVPP的检测下限达到10-9mol/L.比较两种修饰光纤探针的检测结果可知,银溶胶自组装膜修饰更有优势.  相似文献   

3.
构建了具有表面增强拉曼散射(SERS)活性的二维有序环状与盘状的银纳米粒子结构, 利用CTAB包覆银纳米粒子的氯仿溶液直接在图案化的金基底上进行去湿, 当改变银纳米粒子的浓度时可以得到不同的图案. 利用原子力显微镜(AFM)对其结构进行了表征, 以4-巯基吡啶作为探针分子, 采用表面增强拉曼成像技术研究了这种基底的SERS活性, 这将为SERS的研究开拓新的领域.  相似文献   

4.
一种新型表面增强拉曼活性基底的制备方法   总被引:5,自引:0,他引:5  
表面增强拉曼光谱技术 (SERS)具有极高的灵敏度 ,对某些分子其灵敏度比常规拉曼光谱高一百万倍 ,能检测吸附在金属表面的单分子层和亚单分子层的分子 ,并提供丰富的分子结构信息 [1~ 5] .活性基底的制备是获得 SERS信号的前提 ,电化学粗糙化的电极、贵金属溶胶及真空蒸镀的金属岛膜是SERS分析中最常用的 3种活性基底 ,在实际应用中各有利弊 .本文报道一种新的制备银纳米粒子基底的方法 ,可使银纳米粒子生长到合适的尺寸 ,以达到最佳SERS增强效果 .利用紫外 -可见光谱和 AFM研究该 SERS基底纳米粒子的尺寸分布和形貌 ,以 1 ,4-(双…  相似文献   

5.
本研究以纳米Au溶胶为增强试剂,利用便携式拉曼光谱仪,建立了一种血红蛋白的快速无标记检测方法。测定了系列浓度梯度的不同粒径纳米Au溶胶对血红蛋白表面增强拉曼光谱(SERS)信号的增强效果,并进行了重复性验证。结果表明,与血红蛋白溶液的普通拉曼测试效果相比,血红蛋白与纳米Au溶胶混合后,拉曼信号得到显著增强,且粒径为50±15 nm的纳米Au溶胶对血红蛋白拉曼信号的增强效果最好;血红蛋白的拉曼特征峰强度I_(1531)与其质量浓度间具有较好的线性关系,线性范围是5~30 mg/L,相关系数R~2=0.9223;不同批次、相同质量浓度的血红蛋白与纳米Au溶胶混合测定的实验结果重现性好,且与共聚焦显微拉曼光谱仪测定血红蛋白的SERS结果相一致。该方法检测耗时短、设备操作简便且具有较好的重现性。  相似文献   

6.
采用溶胶-水热法制备了不同尺寸的SnO2纳米粒子, 并将其作为表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)活性基底, 重点探讨了表面缺陷能级与SERS性能的关系. 观察到4-巯基苯甲酸(4-MBA)吸附在150 ℃水热合成的SnO2纳米粒子上的SERS 信号最强, 随着在空气中煅烧温度的升高, SERS信号逐渐减弱. 分别用透射电子显微镜、 紫外-可见光谱、 荧光光谱、 X射线衍射和X射线光电子能谱对SnO2纳米粒子进行了表征. 结果表明, SnO2纳米粒子的表面氧空位和缺陷等表面性质在增强拉曼散射性能中发挥着重要的作用, 表面氧空位和缺陷等含量越高其SERS信号就越强.  相似文献   

7.
合成了三种含氨基酸席夫碱的5-氟尿嘧啶类衍生物,用元素分析和1H NMR表征了它们的结构;用拉曼光谱(RS)和表面增强拉曼光谱(SERS)研究目标化合物在银溶胶上的吸附状态,推测其SERS增强机理.结果表明:在银溶胶表面上,羧基氧原子与银形成化学建,苯环是稍微倾斜地吸附在银胶面上,其它部分则平躺吸附于银溶胶表面.  相似文献   

8.
利用加热贴(暖宝贴)作为热源现场合成银溶胶,并用其作为表面增强拉曼光谱(SERS)基底。使用罗丹明6G(R6G)作为探针分子,对合成的银溶胶的SERS性能进行评价。结果显示,银溶胶的制备方法简便、快速,制备时间在15 min内,具有较好的SERS增强效果,且在4 h内具有较好的稳定性。将现合成的银溶胶用于药片中盐酸阿米洛利的SERS检测,在0.8~8 mg/L范围内盐酸阿米洛利的质量浓度与拉曼峰强度有较好的线性相关系,线性方程为:y=1 395ρ-76.40,r~2=0.999 2。检出限(LOD)为0.2 mg/L,其加标回收率为104%~106%,相对标准偏差为0.35%~3.5%。该方法简单快速、稳定性好,为药片中盐酸阿米洛利的快速检测和鉴别提供了新途径。  相似文献   

9.
SERS活性液芯光纤的制备及超灵敏检测应用   总被引:2,自引:0,他引:2  
表面增强拉曼光谱 (SERS)和表面增强共振拉曼光谱 (SERRS)技术的发展使拉曼光谱在各方面的应用突飞猛进 .利用粗糙银电极、蒸镀银岛膜、金和银溶胶的自组装膜等方法制备 SERS活性基底 ,可使拉曼光谱对样品的检测浓度达到 1 0 - 7~ 1 0 - 12 mol/ L,目前可在 1 .0 n L 内检测数十个分子[1~ 3] .1 997年 Nie[4 ] 和 Kneipp等[5] 几乎同时报道拉曼检测达到了单分子水平 .表面修饰的光纤作为传感器 ,在实时、原位或现场检测等应用领域的研究十分活跃 [6~ 9] .液芯光纤作为光纤光谱研究的分支 ,以其在液体样品检测中的独特优势备受关注…  相似文献   

10.
采用溶胶-凝胶技术制备富含巯基的二氧化硅微球,在其表面原位合成银纳米颗粒,将其作为表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)的活性基底材料,重点讨论了银纳米颗粒作为"热点"对SERS性能的影响。银纳米颗粒的原位生成导致微球表面粗糙化,致密的纳米颗粒能够形成更多的热点,分别采用透射电镜、扫描电镜、X射线光电子能谱、Raman等对银纳米颗粒在微球表面生长状况进行了表征。结果表明,微球表面的巯基直接导致银纳米颗粒的生长,并为银纳米颗粒的稳定性提供了还原性环境。  相似文献   

11.
The formation mechanism and morphology of Au-Ag bimetallic colloidal nanoparticles depend on the composition. Ag coated Au colloidal nanoparticles have been prepared by deposition of Ag through chemical reduction on performed Au colloid. The composition of the Au(100-x)-Ag(x) particles was varied from x=0 to 50. The obtained colloids were characterized by UV-vis spectroscopy and transmission electron microscopy (TEM). The Au(80)-Ag(20) colloid consists of alloy nanorods with dimension of 25nmx100nm. The activity of these nanorods in surface enhanced Raman spectroscopy (SERS) was checked by using sodium salicylate as an adsorbate probe. Intense SERS bands are observed indicating its usefulness as a SERS substrate in near infrared (NIR) laser excitation.  相似文献   

12.
Surface-enhanced Raman scattering(SERS) is applied to detect the concentration of carbendzim(CBZ) in tea leaves. Au colloid is selected and used for active surfaces, and the extraction conditions are optimized in the experiment. The linearity range for the SERS intensity and the concentration of CBZ is found to be0.5 to 8 mg kgà1. The detection limit for CBZ is 0.1 mg kgà1and its recovery in tea samples is 72.3%. The detection results for CBZ using this method are compared with those of HPLC, and no obvious difference can be found. In addition, by dripping the condensed Au colloid on the tea leaves, the proposed SERS approach could be used to the in-situ determination of the half life period of CBZ on tea leaves.  相似文献   

13.
以银纳米线为拉曼基底,运用表面增强拉曼光谱技术(SERS)建立了对发热剂中正壬酸香草酰胺的检测方法。采用简便有效的两步滴加多元醇法制备了具有SERS活性的银纳米线,利用扫描电镜和紫外-可见光谱仪对银纳米线进行了表征。对正壬酸香草酰胺进行了SERS研究并对正壬酸香草酰胺的SERS谱带进行了归属。正壬酸香草酰胺的质量浓度在1~1.0×10-8mg/L范围内与其在1588 cm-1处的SERS特征峰强度有良好的线性关系,方法的最低检出浓度可达0.66 pg/L。对样品进行前处理后,运用加标回收法考察其回收率。该方法可以用于发热剂中正壬酸香草酰胺的检测。  相似文献   

14.
The black inkjet and laser prints were analysed with regard to application in forensic analysis of questioned documents. The purpose of this work was to study spectral properties and compare the suitability of surface-enhanced Raman scattering (SERS) with Fourier transform Raman spectra of prints. This work aimed to find optimal surface-enhanced Raman spectroscopic approach for the future analysis of documents using statistical methods. In this work, we analysed eight prints of four laser and four inkjet devices. The samples were measured using two dispersive Raman devices; (DXR Raman microscope with excitation line 532 nm, Foram 685-2 spectrometer − 685 nm) and FT-Raman device (Bruker Spectrometer MultiRAM with excitation line 1064 nm). The silver nanoparticles (AgNPs) colloid for SERS experiment were synthesised and checked by UV–vis spectroscopy and scanning electron microscopy (SEM). The remarkable differences caused by centrifugation of silver colloid were observed just in the SEM images. The main contribution of this paper is to propose the novel approach achieving sufficient SERS signal intensity of black prints using the both, laser and inkjet printers. Moreover, this method is based on just a single metal colloid, and the analysis can be performed in-situ, i.e. directly on the printed sample surface. We consider the SERS could by highly promising and universal for applications in the forensic analysis of printed documents with the combination of statistical method when conventional methods are not effective.  相似文献   

15.
采用振荡法和种子生长技术制备出核壳结构的Au@SiO2纳米颗粒及夹层结构的Au@SiO2@Ag纳米颗粒, 用HF将Au@SiO2@Ag NPs夹层的SiO2溶解, 得到内部带有粒径为30 nm的可移动金核、壳层厚度约为30 nm的中空银纳米颗粒(Au@air@Ag NPs). 用扫描电子显微镜和透射电子显微镜对所得到的纳米微球的形貌进行了表征, 并以罗丹明B为探针分子研究了Au@air@Ag 纳米颗粒的表面增强拉曼(SERS)效应, 发现Au@air@Ag 纳米颗粒是一种可应用于SERS的理想材料.  相似文献   

16.
In this paper, we propose two new approaches for preparing active substrates for surface-enhanced Raman scattering (SERS). In the first approach (method 1), one transfers AgI nanoparticles capped by negatively charged mercaptoacetic acid from a AgI colloid solution onto a quartz slide and then deoxidizes AgI to Ag nanoparticles on the substrate. The second approach (method 2) deoxidizes AgI to Ag nanoparticles in a colloid solution and then transfers the Ag nanoparticles capped by negatively charged mercaptoacetic acid onto a quartz slide. By transfer of the AgI/Ag nanoparticles from the colloid solutions to the solid substrates, the problem of instability of the colloid solutions can largely be overcome. The films thus prepared by both approaches retain the merits of metal colloid solutions while they discharge their shortcomings. Accordingly, the obtained Ag particle films are very suitable as SERS active substrates. SERS active substrates with different coverages can be formed in a layer-by-layer electrostatic assembly by exposing positively charged surfaces to the colloid solutions containing oppositely charged AgI/Ag nanoparticles. The SERS active substrates fabricated by the two novel methods have been characterized by means of atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) spectroscopy. The results of AFM and UV-vis spectroscopy show that the Ag nanoparticles grow with the increase in the number of coverage and that most of them remain isolated even at high coverages. Consequently, the surface optical properties are dominated by the absorption due to the isolated Ag nanoparticles. The relationship between SERS intensity and surface morphology of the new active substrates has been investigated for Rhodamine 6G (R6G) adsorbed on them. It has been found that the SERS enhancement depends on the size and aggregation of the Ag particles on the substrates. Especially, we can obtain a stronger SERS signal from the substrate prepared by method 1, implying that for the metal nanoparticles capped with stabilizer molecules such as mercaptoacetic acid, the in situ deoxidization in the film is of great use in preparing SERS active substrates. Furthermore, we have found that the addition of Cl- into the AgI colloid solution changes the surface morphology of the SERS active substrates and favors stronger SERS enhancement.  相似文献   

17.
为简单有效地制备高活性表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy,SERS)基底。本文采用静电纺丝聚乙烯醇(PVA)/聚丙烯酸(PAA)纳米纤维为支撑材料,通过直接浸泡的方法,利用金纳米棒与电纺纤维之间的静电力,使纳米棒在纤维表面自组装,得到了性能优异的SERS基底。通过透射电子显微镜、扫描电子显微镜对金纳米棒以及不同状态下的电纺纤维的形貌进行表征,结果表明,金纳米棒均匀且密集地负载在纤维表面。通过设置不同的浸泡时间确定了金纳米棒组装平衡的时间为12 h,并通过调控纺丝时间和金纳米棒的浓度发现随着纺丝时间和金纳米棒浓度的增加,复合纤维膜SERS增强效果随之提升。该复合纤维膜具有优异的SERS均匀性,并且能够检测到浓度低至10~(-10)mol/L的4-氨基苯硫酚的存在。  相似文献   

18.
A novel method for the dynamic determination of cetirizine dihydrochloride in urine using surface enhanced Raman scattering (SERS) has been developed. Comparison of SERS activities between gold and silver colloid was made based on the analysis of the transmission electron micrographs and the SERS spectra, revealing that silver colloid is much more efficient on the signal enhancement performance. The primary sites of the adsorption on the nanoparticle surface were represented by the feature peaks of piperazine at ca. 1050?cm?1 and phenyl rings at ca. 1630?cm?1, respectively. The best signal response was extracted at pH 7 at the Cl?:Ag+ molar ratio of 2:1. The matrix effect was eliminated by subtracting the spectral contribution of the blank urine from the sample spectra. Sample preparation procedures were minimized. Quantification could be simply accomplished on the predicted versus actual concentration curve, within the Raman shift range from 500 to 2500?cm?1. Neither modeling nor complicate calculation was required. The method was shown to be specific and applicable for drug urine concentration monitoring in situ.  相似文献   

19.
Au/Ag核-壳结构纳米粒子的制备及其SERS效应   总被引:1,自引:0,他引:1  
随着大量有关表面增强拉曼散射 (SERS)的实验和理论研究的开展 ,金属纳米粒子作为一类重要的 SERS增强介质 ,已引起了人们浓厚的研究兴趣 [1] .而 Au和 Ag作为最常用的活性基底物质 ,更是研究的热点 [2 ,3 ] .最近 ,美国印第安那大学的 Nie等 [4 ] 在单个银纳米粒子上 ,观察到高达 1 0 14 ~ 1 0 15的SERS因子 .同时 ,他们的另外一项工作表明银纳米粒子的形状和大小对 SERS活性有很大影响 [5] .但是 ,由于 Ag溶胶制备的重复性较差 ,且粒度分布不均匀 ,通过控制银颗粒大小而调控 SERS活性是相当困难的[6] .与 Ag相比 ,Au在可见光…  相似文献   

20.
Colloidal silver (Ag) nanoparticles (AgNP) have been widely used for surface-enhanced Raman spectroscopy (SERS) applications. We report a simple, rapid and effective method to prepare AgNP colloids for SERS using the classic organic chemistry Ag mirror reaction with Tollens’ reagent. The AgNP colloid prepared with this process was characterized using SEM, and the reaction conditions further optimized using SERS measurements. It was found that Ag mirror reaction conditions that included 20 mM AgNO3, 5 min reaction time, and 0.5 M glucose produced AgNP colloids with an average size of 319.1 nm (s.d ± 128.1). These AgNP colloids exhibited a significant SERS response when adenine was used as the reporter molecule. The usefulness of these new AgNP colloids was demonstrated by detecting the nucleotides adenosine 5′-mono-phosphate (AMP), guanosine 5′-monophosphate (GMP), cytidine 5′-monophosphate (CMP), and uridine 5′-monophosphate (UMP). A detection limit of 500 nM for AMP was achieved with the as-prepared AgNP colloid. The bacterium Mycoplasma pneumoniae was also easily detected in laboratory culture with these SERS substrates. These findings attest to the applicability of this AgNP colloid for the sensitive and specific detection of both small biomolecules and microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号