首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The synthesis and thermomechanical properties of a novel class of self‐healing perfluoropolyethers (PFPEs) is reported. By decoration of 2‐ureido‐4[1H]‐pyrimidone end groups on the termini of low molar mass PFPE, the formation of supramolecular polymers and networks held together via hydrogen bonding associations was achieved. These novel supramolecular polymer materials exhibit a combination of enhanced modulus and elasticity, along with self‐healing properties, where rapid self‐healing time was demonstrated using dynamic rheological measurements. These types of supramolecular PFPEs are anticipated to be useful for a number of emerging areas in lubrication. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3598–3606  相似文献   

2.
Herein, we investigate the influence of spacer length on the homoassociation and heteroassociation of end‐functionalized hydrogen‐bonding polymers based on poly(n‐butyl acrylate). Two monofunctional ureido‐pyrimidinone (UPy) end‐functionalized polymers were prepared by atom transfer radical polymerization using self‐complementary UPy‐functional initiators that differ in the spacer length between the multiple‐hydrogen‐bonding group and the chain initiation site. The self‐complementary binding strength (Kdim) of these end‐functionalized polymers was shown to depend critically on the spacer length as evident from 1H NMR and diffusion‐ordered spectroscopy. In addition, the heteroassociation strength of the end‐functionalized UPy polymers with end‐functionalized polymers containing the complementary 2,7‐diamido‐1,8‐naphthyridine (NaPy) hydrogen‐bond motif is also affected when the aliphatic spacer length is too short. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Supramolecular assembly through complementary interaction between molecular subgroups belonging to phase‐separating polymer species offers a great opportunity, not only for constructing nanoscale soft templates reminiscent of conventional block copolymer morphologies, but also for tailoring surface properties by facile removal of one of the structure components by cleaving complementary interactions. Herein we report the fabrication of a novel, organic, nanoporous film through supramolecular assembly of two complementarily, end‐interacting, mono‐end‐functionalized polymers under solvent annealing. The film of end‐functionalized polymer blends under solvent annealing yielded phase‐separated nanodomains that resemble nanoscopically ordered structures of block copolymers, but that are more advantageous due to easily cleavable and exchangeable links between the phase‐separated domains. The removal of one of the components of the precursor structure formed from the end‐functionalized polymers through cleavage of complementary interactions allowed us to fabricate mono‐ or multilayered nanoporous structures in which the chemically useful end‐functionalities of the remnant polymers are rich on the surface of the pores. The resultant, organic, nanoporous films with tailored surface functionality offer a useful platform for various chemical and biological applications.  相似文献   

4.
Reversible, supramolecular polymer networks based on commercially available bulk chemicals, and prepared using an industrially attractive route are described. The difunctional, low molecular weight polytetramethyleneoxide is functionalized with trimellitic imide, and reversibly crosslinked with the trifunctional melamine using the well known imide‐diaminopyridine triple hydrogen bonding pattern. Molecular modelling calculations as well as experimental studies on model compounds indicate that the aimed 1:3 melamine ‐ imide stoichiometry is obtained. The resulting reversible, supramolecular polymer structures show a rheological behaviour, that is typical for polymer networks. The results presented here describe an industrially accessible route to use supramolecular interactions in order to obtain materials with novel properties.  相似文献   

5.
The precise synthesis and variation in the thermoresponsive property based on the supramolecular assembly of a novel urea end‐functionalized poly(N‐isopropylacrylamide) (PNIPAM) were studied. A series of PNIPAMs with different diphenylurea groups at the chain end (X? Ph? NH? CO? NH? Ph? trz? PNIPAM: X = H, OCH3, CH3, NO2, Cl, and CF3) were synthesized by using a combination of the atom transfer radical polymerization and the copper(I)‐catalyzed azide‐alkyne cycloaddition. The cloud point of the obtained polymers depended on the hydrogen‐bonding ability of the introduced urea group. The 1H NMR measurement suggested that the obtained PNIPAM assembled in water via the intermolecular hydrogen bonding by the terminal urea group. From the dynamic light scattering and transmission electron microscopy measurements, the aggregated nanoparticles of the resulting polymer were directly observed in water at a temperature below its cloud point. The hydrogen‐bonding property of the chain end urea group was concluded to be involved in the aggregation of the PNIPAM in water, leading to the variation in its cloud point. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6259–6268, 2009  相似文献   

6.
氢键型超分子聚合物的合成、结构与应用   总被引:2,自引:0,他引:2  
氢键型超分子聚合物是重复单元经氢键相互作用连接在一起的阵列,可生成液晶态,多样化的几何形状和高有序的凝聚态结构。氢键的温度敏感性和可逆性导致氢键型超分子聚合物具有和传统共价键结合的聚合物不同的性能。氢键型超分子聚合物是一类动态的智能型功能高分子材料,可在光化学、光电转换、非线性光学、弹性体、水凝胶和生物医用工程等领域广泛应用。本文从氢键型超分子聚合物化学(合成与机理)、物理(结构与性能)和工程(加工与应用)三个方面介绍氢键型超分子聚合物的进展。  相似文献   

7.
氢键识别超分子聚合物的新进展*   总被引:1,自引:0,他引:1  
王宇  唐黎明 《化学进展》2007,19(5):769-778
近年来,由于氢键作用对聚合物的热力学性质、微观自组装、结晶及液晶行为的重要影响,氢键识别在超分子聚合物的分子设计与结构控制方面的应用受到广泛关注。本文系统介绍了氢键识别体系的类型与性质,以及分子结构、分子内氢键对氢键识别强度的影响,讨论了羧酸与吡啶间氢键识别体系、与核苷相关的氢键识别体系以及四重氢键识别体系在超分子聚合物中的最新应用,主要介绍了氢键识别超分子聚合物的合成、结构、性质及功能。  相似文献   

8.
We report the design of bioinspired, reversible supramolecular thermoplastic elastomers (TPEs) functionalized with ureido‐cytosine (UCyt) complementary quadruple hydrogen bonding (QHB) sites. The polymer contained a soft poly(n‐butyl acrylate) central block that imparted flexibility and two external, hard nucleobase‐containing blocks that contributed to structural integrity. In addition, the hard block with pendant QHB motifs served as efficient physical crosslinks to further enhance the thermomechanical performance, where the polymer service window extended up to 30 °C higher compared to the controls that bear dimeric hydrogen bonding units. The resulting UCyt copolymers also exhibited improved surface and bulk morphology, which self‐assembled into well‐ordered lamellar microstructures. Moreover, the polymer displayed an unexpected moisture‐resistant property with less than 1 wt % equilibrium moisture uptake even at 95% relatively humidity, which presumably correlated with its well‐ordered and densely‐packed morphology facilitated by strong hydrogen bonding. Variable temperature Fourier‐transform infrared spectroscopy experiments further confirmed the thermoreversibility of hydrogen bonding, indicating melt‐processablility and recyclability of the polymer. These physical properties verified quadruple bonding dominated behavior, and structure–property–morphology relationships suggest key design parameters for future TPEs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 13–23  相似文献   

9.
Hydrogen‐bonded supramolecular polymers were prepared from the derivatives of α‐amino‐ε‐caprolactam (ACL), obtained from a renewable resource. Several self‐complimentary bis‐ or tetra‐caprolactam monomers were synthesized by varying the number of carbons of the spacer between the hydrogen‐bonding end groups. Physical properties of these hydrogen‐bonded polymers were clearly demonstrated by differential scanning colorimetry, solid‐state NMR, and X‐ray powder diffraction analyses. The supramolecular behavior was also supported by fiber formation from the melt for several of these compounds, and stable glassy materials were prepared from the physical mixtures of two different biscaprolactams. The self‐association ability of ACL was also used by incorporating ACL at the chain ends of low‐molecular weight Jeffamine (Mn = 900 g/mol) using urea and amide linkages. The transformation of this liquid oligomer at room temperature into a self‐standing, transparent film clearly showed the improvement in mechanical properties obtained by the introduction of terminal hydrogen‐bonding groups. Finally, the use of monomers with a functionality of four gave rise to network formation either alone or combination with bifunctional monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
To study light‐triggered self‐healing in supramolecular materials, we synthesized supramolecular thermoplastic elastomers with mechanical properties that were reversibly modulated with temperature. By changing the supramolecular architecture, we created polymers with different temperature responses. Detailed characterization of the hydrogen‐bonding material revealed dramatically different temperature and mechanical stress response due to two different stable states with changes in the hydrogen bonding interactions. A semi‐crystalline state showed no response to oscillatory shear deformations while the melt state behaved as a typical energy dissipative material with a clear crossover between storage and loss moduli. Comparison studies on heat generation after light excitation revealed no differences in photo‐thermal conversion when an Fe(II)‐phenanthroline chromophore was either physically blended into the H‐bonding polymer or covalently attached to the supramolecular network. These materials showed healing of scratches with light‐irradiation, as long as the overlap of material absorbance and laser excitation was sufficient. Differences in the efficiency and rate of photohealing were observed, depending on the type of supramolecular interaction, and these were attributed to the differences in the thermal response of the materials' moduli. Such results provide insight into how materials can be designed with chromophores and supramolecular bonding interactions to tune the light‐healing efficiency of the materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1003–1011  相似文献   

11.
Nucleic acids and proteins, two of nature's biopolymers, assemble into complex structures to achieve desired biological functions and inspire the design of synthetic macromolecules containing a wide variety of noncovalent interactions including electrostatics and hydrogen bonding. Researchers have incorporated DNA nucleobases into a wide variety of synthetic monomers/polymers achieving stimuli-responsive materials, supramolecular assemblies, and well-controlled macromolecules. Recently, scientists utilized both electrostatics and complementary hydrogen bonding to orthogonally functionalize a polymer backbone through supramolecular assembly. Diverse macromolecules with noncovalent interactions will create materials with properties necessary for biomedical applications.  相似文献   

12.
Topological features of one‐dimensional macromolecular chains govern the properties and functionality of natural and synthetic polymers. To address this issue in supramolecular polymers, we synthesized two topologically distinct supramolecular polymers with intrinsic curvature, circular and helically folded nanofibers, from azobenzene‐functionalized supramolecular rosettes. When a mixture of circular and helically folded nanofibers was exposed to UV light, selective unfolding of the latter open‐ended supramolecular polymers was observed as a result of the curvature‐impairing internal force produced by the trans‐to‐cis photoisomerization of the azobenzene. This distinct sensitivity suggests that the topological features of supramolecular polymers define their mechanical stability. Furthermore, the exposure of circular supramolecular polymers in more polar media to UV irradiation resulted in ring opening followed by chain elongation, thus demonstrating that the circular supramolecular polymer can function as a topological kinetic trap.  相似文献   

13.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   

14.
Supramolecular polymers constructed by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host-guest interactions have received increasing attention due to their elegant structures,outstanding properties,and potential applications.Hydrogen bonding endows these supramolecular polymers with good adaptability and reversibility,while macrocyclic host-guest interactions give them good selectivity and versatile stimuli-responsiveness.Therefore,functional supramolecular polymers fabricated by these two highly specific,noninterfering interactions in an orthogonal way have shown wide applications in the fields of molecular machines,electronics,soft materials,etc.In this review,we discuss the recent advances of functional supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydroge n bonding and host-guest interactions.In particular,we focus on crown ether-and pillar[n]arene-based supramolecular polymers due to their compatibility with multiple hydrogen bonds in organic solution.The fabrication strategies,interesting properties,and potential applications of these advanced supramolecular materials are mainly concerned.  相似文献   

15.
A supramolecular material containing quadruple hydrogen bonding sites was prepared by reacting the amines of methyl isocytosine and the epoxy groups of poly (ethylene glycol diglycidyl ether). This supramolecular polymer was complexed with metal salt, that is potassium iodide, to produce polymer electrolytes, and their physical properties, specific interactions, and conductivity behavior were investigated. The ionic conductivity of polymer electrolytes continuously increased with increasing salt concentration up to 0.4 of salt weight fraction, presenting usually high solubility limit of salt in the supramolecular polymer. Wide angle X‐ray scattering data also presented that the metal salt was completely dissolved in the supramolecular polymer up to 0.4 of salt weight fraction. Upon the introduction of metal salt, the mechanical properties of the supramolecular polymer were significantly enhanced by around 10 times and the glass transition temperature of the polymer increased by about 50 °C, as revealed by complex melt viscosities and differential scanning calorimetry. These unusual behaviors of salt solubility and mechanical properties for supramolecular polymer/metal salt complexes were attributed to the strong, additional metal ion coordination to hydrogen bonding sites as well as ether oxygens of polymer matrix, as supported by FTIR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3181–3188, 2007  相似文献   

16.
SL Li  T Xiao  C Lin  L Wang 《Chemical Society reviews》2012,41(18):5950-5968
Large aggregates, constructed by linking together monomer building blocks via non-covalent interactions with polymer properties, are regarded as supramolecular polymers. Many kinds of non-covalent interactions, such as metal-ligand coordination, hydrogen bonding, π-π stacking, ionic interaction, and host-guest interaction etc., can be involved in the binding interactions of monomer building blocks, as well as in the modification of the side chain for the construction of variable supramolecular polymers. In this tutorial review, we summarized the reported supramolecular polymers fully- or partially-created from the combination of multiple non-covalent binding interactions, mainly of two kinds, in the orthogonal way.  相似文献   

17.
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain‐like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence‐dependent phase structures. Not only compositional variation changed the self‐assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank–Kasper phases. The formation mechanism was attributed to the conformational change driven by the collective hydrogen bonding and the sequence‐mandated topology of the molecules. These results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self‐assembly.  相似文献   

18.
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain‐like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence‐dependent phase structures. Not only compositional variation changed the self‐assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank–Kasper phases. The formation mechanism was attributed to the conformational change driven by the collective hydrogen bonding and the sequence‐mandated topology of the molecules. These results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self‐assembly.  相似文献   

19.
Diarylethene 1 equipped with two monotopic melamine hydrogen‐bonding sites and oligothiophene‐functionalized ditopic cyanurate (OTCA) were mixed in a nonpolar solvent to form AA‐BB‐type supramolecular co‐polymers (SCPs) bearing photoswitchable moieties in their main chains and extended π systems as side chains. UV/Vis, fluorescence, dynamic light scattering (DLS), TEM, and AFM studies revealed that the two functional co‐monomers formed flexible quasi‐one‐dimensional SCPs in solution that hierarchically self‐organized into helical nanofibers through H‐aggregation of the oligothiophene side chains. Upon irradiating the SCPs with UV light, a transition occurred from the H‐aggregated state to non‐aggregated monomeric oligothiophene side chains, as shown by spectroscopic studies, which indicates the formation of small oligomeric species held together only by hydrogen‐bonding interactions. TEM and AFM visualized unfolded fibrils corresponding to elongated single SCP chains formed upon removal of solvent. The helical nanofibers were regenerated upon irradiating the UVirradiated solution with visible light. These results demonstrated that the supramolecular polymerisation followed by hierarchical organization can be effectively controlled by proper supramolecular designs using diarylethenes and π‐conjugated oligomers.  相似文献   

20.
A novel application of supramolecular interactions within semicrystalline polymers, capable of self‐assembling into supramolecular polymer networks via self‐complementary multiple hydrogen‐bonded complexes, is demonstrated for efficient construction of highly controlled self‐organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε‐caprolactone) containing self‐complementary sextuple hydrogen‐bonded uracil‐diamidopyridine (U‐DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross‐linking created by reversible sextuple hydrogen bonding between U‐DPy units. Due to the ability to vary the extent of the reversible network by tuning the U‐DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U‐DPy resulted in a polymer with a high crystallization rate constant, short crystallization half‐time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U‐DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号