首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Electrothermal vaporization inductively coupled plasma atomic emission spectrometry was applied to the determination of sulfur species in aqueous solutions. The sensitivity for sulfur as sulfate was found to be depending on the cations in the sample. For understanding this phenomenon the thermal behavior of sulfuric acid, ammonium sulfate and the sulfates of sodium, zinc, magnesium and silver was studied. There were significant differences in the thermal release of sulfur from these sulfates. To explain these phenomena different reaction mechanisms were calculated using thermodynamic data. Pd(NO3)2 and Ge in KOH were successfully applied as modifiers for the stabilization of the sulfates during the thermal pre-treatment step and to establish a uniform thermal behavior of different sulfates. The stabilization of sulfur using Ge and Pd as modifiers is based on the reduction of the sulfates in presence of carbon, resulting in the formation of GeS and PdS, respectively. This explanation has been supported by comparing the experimental results with thermodynamic calculations considering different reactions for the thermal decomposition of the sulfates. Applying Ge (in KOH) as modifier the absolute detection limit was 300 pg sulfur (e.g. LOD 30 ng mL–1). The significant influence of phosphates on the determination of sulfur could be essentially reduced by Pd as modifier. Received: 11 November 1997 / Revised: 14 January 1998 / Accepted: 18 January 1998  相似文献   

2.
The determination of Cr in digest solutions of mussels and non-fat milk powder by tungsten coil electrothermal atomic absorption spectrophotometry (TC-ETAAS) is affected by interferences. This study reports a critical evaluation of chemical modifiers that could be employed to correct these interferences. The chemical modifiers tested were: Mg [as Mg(NO3)2], Pd [as Pd(NO3)2], NH4NO3, ascorbic acid, and mixtures of these compounds. The less effective modifier was NH4NO3. The best effects, considering thermal stabilization and sensitivity, were obtained in mixtures of ascorbic acid plus Mg. Chromium was determined by TC-ETAAS in certified reference materials of mussels and non-fat milk powder, and results were comparable with those obtained by graphite furnace atomic absorption spectrophotometry (GFAAS). Received: 19 June 1998 / Revised: 11 January 1999 / Accepted: 16 January 1999  相似文献   

3.
The determination of Cr in digest solutions of mussels and non-fat milk powder by tungsten coil electrothermal atomic absorption spectrophotometry (TC-ETAAS) is affected by interferences. This study reports a critical evaluation of chemical modifiers that could be employed to correct these interferences. The chemical modifiers tested were: Mg [as Mg(NO3)2], Pd [as Pd(NO3)2], NH4NO3, ascorbic acid, and mixtures of these compounds. The less effective modifier was NH4NO3. The best effects, considering thermal stabilization and sensitivity, were obtained in mixtures of ascorbic acid plus Mg. Chromium was determined by TC-ETAAS in certified reference materials of mussels and non-fat milk powder, and results were comparable with those obtained by graphite furnace atomic absorption spectrophotometry (GFAAS).  相似文献   

4.
A comparative study on the efficiency of some tungsten containing chemical modifiers such as W, W+Pd, W+Rh, W+Pt and W+Ru for thermal stabilization of Bi, In, Pb and Sb has been performed systematically by a Zeeman electrothermal atomization atomic absorption spectrometer (ETAAS). The addition of tartaric acid (TA) as a reducing agent additionally to the mixed modifiers was studied. A mixture of W+Pd+TA was found to be a powerful mixed modifier for the determination of Bi, In, Pb and Sb. Pretreatment temperatures could be increased up to 1250–1500° C using this mixed modifier. The use of the mixed modifier results in an enhanced accuracy and precision of the method and recovery rates above 97% for all samples. The W+Pd+TA mixed modifier was applied to the determination of Bi and Pb in dissolved geological reference samples. Received: 14 March 1996 / Revised: 3 June 1996 / Accepted: 30 June 1996  相似文献   

5.
A comparative study on the efficiency of some tungsten containing chemical modifiers such as W, W+Pd, W+Rh, W+Pt and W+Ru for thermal stabilization of Bi, In, Pb and Sb has been performed systematically by a Zeeman electrothermal atomization atomic absorption spectrometer (ETAAS). The addition of tartaric acid (TA) as a reducing agent additionally to the mixed modifiers was studied. A mixture of W+Pd+TA was found to be a powerful mixed modifier for the determination of Bi, In, Pb and Sb. Pretreatment temperatures could be increased up to 1250–1500° C using this mixed modifier. The use of the mixed modifier results in an enhanced accuracy and precision of the method and recovery rates above 97% for all samples. The W+Pd+TA mixed modifier was applied to the determination of Bi and Pb in dissolved geological reference samples. Received: 14 March 1996 / Revised: 3 June 1996 / Accepted: 30 June 1996  相似文献   

6.
The effects of NH4H2PO4 and Pd as chemical modifiers in SS-GFAAS are studied in the determination of Cd in sewage sludge and of Sn in PVC samples. Whereas for Cd both modifiers act equally well whether Cd is in solution or in the solid sample, the effect of Pd on tin is different. To make the Pd modifier as effective on Sn in PVC as on Sn in solution a two-step pyrolysis must be introduced into the temperature programme. It is also shown that the contribution of the application of chemical modifiers to the final imprecision of the determination is negligible compared to that introduced by the sample inhomogeneity.  相似文献   

7.
The suitability of eleven modifiers (Pd-, Mg-, K-, Ca- and NH4-salts) for electrothermal vaporization coupled to inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of Mn, Cu, Zn, Cd and Pb has been studied. Solutions containing varying quantities (10–2000 ng absolute) of these salts have been added to four different amounts of analyte to study their suitability as modifier and their mass dependent influence. The best sensitivity enhancement for all elements tested was achieved with IrCl3 and PdCl2. From a comparison of the effect of PdCl2 vs. Pd(NO3)2 it could be concluded that the mechanism of matrix modification also depends on the chemical form of the modifier. Particularly, for the volatile elements Cd and Zn differences in the behavior of the different chemical compounds of one metal (e.g. Pd) is evident, which shows that the enhancement effect is a result of the stabilization of the analytes in the graphite tube prior to vaporization and the improvement of the transport efficiency after vaporization.  相似文献   

8.
Three chemical modifiers ((NH(4))(2)HPO(4), NH(4)H(2)PO(4), and Pd as Pd(NO(3))(2)) were evaluated for the determination of Cd in acid-digested solutions of hair and blood using electrothermal atomic absorption spectrometry in a tungsten coil atomizer (TCA). All modifiers caused some thermal stabilization of Cd when compared to the behavior observed in nitric acid medium. The best effects were observed in 15 mug ml(-)(1) Pd medium; the characteristic mass of Cd was 0.3 pg and the method detection limits were 0.009 mug g(-)(1) in hair and 0.2 mug l(-)(1) in blood. In addition to a slight thermal stabilization effect, Pd also increased the sensitivity for Cd by ca. 40% and the tungsten coil lifetime by 20% (i.e. from 300 to 360 heating cycles), reduced background signals, and eliminated condensed phase interferences caused by concomitants. The accuracy (3.2% as mean relative error in the Pd modifier) was checked for the determination of Cd in acid-digested solutions of certified reference materials of human hair and blood and by recoveries of Cd in spiked hair and blood samples by both TCA and a graphite furnace procedure. All results obtained in chemical modifiers are in agreement at a 95% confidence level.  相似文献   

9.
A comparative and systematic study has been carried out of the effects of palladium and molybdenum containing chemical modifiers, such as Pd + Rh, Pd + Pt, Pd + Ru, Pd + Rh + Pt, Pd + Rh + Ru, Mo + Pd, Mo + Rh, Mo + Ru and Mo + Pt and additionally tartaric acid (TA) as a reducing agent together with mixed modifiers for the thermal stabilization of Bi, In and Pb in a Zeeman electrothermal atomic absorption spectrometer (ETAAS). The effect of the mass ratios of the mixed modifier components on the maximum pretreatment temperature for the analytes has been determined. The modifier mixtures of Pd + Rh + Pt, Mo + Pd + TA and Mo + Pt + TA were found to be especially powerful for the determination of Bi, In and Pb. These mixed modifiers could increase the ashing temperatures of the analytes up to 1250–1400° C. They were applied to the determination of Bi and Pb in dissolved geological reference samples and accuracy and precision of the method were thereby enhanced. The percent relative error was decreased from 20.0 to 0.4 for Bi and from 10.5 to 0.3 for Pb, depending on the sample type. Received: 9 May 1997 / Revised: 19 August 1997 / Accepted: 20 August 1997  相似文献   

10.
A comparative and systematic study has been carried out of the effects of palladium and molybdenum containing chemical modifiers, such as Pd + Rh, Pd + Pt, Pd + Ru, Pd + Rh + Pt, Pd + Rh + Ru, Mo + Pd, Mo + Rh, Mo + Ru and Mo + Pt and additionally tartaric acid (TA) as a reducing agent together with mixed modifiers for the thermal stabilization of Bi, In and Pb in a Zeeman electrothermal atomic absorption spectrometer (ETAAS). The effect of the mass ratios of the mixed modifier components on the maximum pretreatment temperature for the analytes has been determined. The modifier mixtures of Pd + Rh + Pt, Mo + Pd + TA and Mo + Pt + TA were found to be especially powerful for the determination of Bi, In and Pb. These mixed modifiers could increase the ashing temperatures of the analytes up to 1250–1400° C. They were applied to the determination of Bi and Pb in dissolved geological reference samples and accuracy and precision of the method were thereby enhanced. The percent relative error was decreased from 20.0 to 0.4 for Bi and from 10.5 to 0.3 for Pb, depending on the sample type. Received: 9 May 1997 / Revised: 19 August 1997 / Accepted: 20 August 1997  相似文献   

11.
Determination of selenium by electrothermal atomic absorption spectrometry (ETAAS) is complicated by the presence of different species of this analyte. The presence of different oxidation states (−II, IV and VI) may result in different sensitivities obtained for each species rendering impossible the use of a single species for calibration. These species also exhibit different behaviours regarding thermal stabilities; the temperature program must be provided to conform to this problem. Chemical modifiers are commonly used for thermal stabilization of selenium species. In this study, experiments were carried out to demonstrate the effect of nitric acid in the presence of chemical modifiers. Nickel and palladium + magnesium were selected as the most commonly used chemical modifiers. Using both aqueous and human serum solutions it has been demonstrated that although chemical modifiers provide thermal stabilization of species so that higher ashing temperatures can be used, equal sensitivities cannot be achieved unless nitric acid is also present. Selenite, selenate, selenomethionine and selenocystine were used in experiments. When equal sensitivities for all these species are achieved, determination of total selenium by ETAAS can be performed by using a single species as the standard; selenite was used in this study. Precision was 5.0% or better using peak height signals. There was no significant difference in detection limits (3s) when Ni or Pd + Mg(NO3)2 was used as chemical modifier; 37 and 35 pg of selenium were found to be the detection limits for Ni and Pd + Mg(NO3)2 chemical modifiers, respectively. For chemical modifications, either 5 μg of Ni or 0.5 μg of Pd and 5 μg of Mg(NO3)2 were used; final solutions contained 2.5% HNO3. In serum analyses, 10 μg of Ni was used in presence of 2.5% HNO3.  相似文献   

12.
The electrothermal atomization of the volatile elements arsenic, antimony and thallium from a refractory metal platform consisting of a tungsten coil and/or a refractory metal foil with the dimensions of a conventional graphite platform was studied. Several combinations of refractory metal platforms were investigated, as follows: W platform; Ta platform; W coil; W coil on a W platform and W coil on a Ta platform. The best combination for these elements as regards both thermal stabilization and sensitivity is the W coil on a Ta platform. Thermal stabilization is also achieved with a W coil on a W platform. The presence of Pd-containing chemical modifier favors the thermal stabilization of the analytes. The sufficient amount is 2 micrograms of Pd. The maximal temperatures of pyrolysis are higher (arsenic, antimony) or equal (thallium) to those when using different chemical modifiers, added as solutions. It may be concluded, that the refractory metal platforms act as "built-in modifiers". They are suitable for the determination of arsenic, antimony and thallium in samples of complex matrix composition where high thermal stability of the analytes during the pyrolysis step is required.  相似文献   

13.
The presence of iron and phosphates in biological matrices causes deuterium arc background-correction systems to overcompensate at several arsenic and selenium resonance lines. The addition of platinum as matrix modifier has a significant effect on both the absorbance/time profile of iron and the formation of gaseous phosphate decomposition products. A nickel/platinum matrix modifier is shown effectively to control the problems in the determination of selenium arising both from thermal instability and spectral interferences. The same combination eliminates the spectral interferences found at the arsenic resonance lines. Remaining problems are the thermal stabilization of organometallic arsenic compounds present in biological samples. When radioactived-labelled 74As compounds prepared in vivo were applied, none of the tested matrix modifiers (Ni, Cu, Ag, Pd, Zr, Ce, Ce + magnesium nitrate) showed a significant influence on the volatility of arsenic in whole blood and urine from rats.  相似文献   

14.
A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different ‘coating’ treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l−1 NH4F HF after every three boron measurements. The addition of 10 μl of 15 g l−1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l−1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.  相似文献   

15.
《Analytical letters》2012,45(10):1921-1937
Abstract

Several chemical modifiers based on tungsten have been evaluated: the individual modifiers W(VI) as WO3 in aq. 0.2 M NH3 and W(V) as W in H2O2 and the mixed modifiers W(VI)/NH3 + Pd(II), W(V)/H2O2 + Pd(II), and W(V)/H2O2 + PO4 3-. High efficiency of thermal stabilization for 18 analyte elements of high and moderate volatility has been demonstrated and possible mechanisms of stabilization are discussed.  相似文献   

16.
Cadmium, lead, copper and manganese were determined in human deciduous teeth and bone ash 1400 standard reference material by electrothermal atomic absorption spectrometry (ETAAS), using a lanthanum + palladium + citric acid (CA) modifier mixture. Optimum masses and mass ratios of La, La + Pd and La + Pd + CA modifiers for analytes in bone ash 1400 sample solution were investigated. Pyrolysis and atomization temperatures of analytes in a tooth sample solution were obtained with and without modifiers. The mixture of La + Pd + CA was found to be preferable for the determination of analytes in tooth samples and bone ash 1400, dissolved in a mixture of HNO3 + H2O2. The detection limits and characteristic masses of analytes were obtained with or without modifiers based on integrated absorbance for tooth sample solution (2% m/v). The detection limits obtained with La + Pd + CA are 6,24,16 and 46 ng g?1 for Cd, Cu, Mn and Pb, respectively. Recovery tests for analytes in bone ash 1400 and a tooth solution with La and La + Pd + CA modifier mixture were studied and compared with certified and non certified values. The La + Pd + CA mixture was also applied to the determination of Cd, Pb, Cu and Mn in tooth samples.  相似文献   

17.
应用Pd(NO3)2-抗坏血酸(Vc)基体改进剂,建立了石墨炉原子吸收法(GFAA法)测定土壤和沉积物样品中铊。针对土壤和沉积物复杂基体,GFAA法测定铊元素主要受到氯离子的干扰,文中研究了常见基体改进剂(包括NH4NO3,(NH4)2SO4,La(NO3)3,Mg(NO3)2,Vc,Pd(NO3)2,Pd(NO3)2-Vc)对氯离子的抑制效果。通过研究不同基体改进剂测定含氯铊标准溶液的吸收曲线,探讨出基体改进剂测定铊的作用机理。以土壤或沉积物标准物质为研究对象,优化了应用Pd(NO3)2-Vc测定铊的灰化温度、基改剂浓度以及原子化温度。在最佳实验条件下,通过比较有无基体改进剂条件下,采用GFAA法测定不同土壤和沉积物中铊的精密度和准确度,实验结果表明,应用Pd(NO3)2-VC基体改进剂,测定土壤和沉积物标准物质中铊的测定结果都在标准值范围之内,6次平行测定的相对标准偏差范围为2.8%~8.4%,用于测定实际土壤和沉积物样品加标回收率为128.0%和92.9%。  相似文献   

18.
Acar O 《Talanta》2005,65(3):672-677
Cadmium, copper and lead in soils, sediments and spiked sea water samples have been determined by electrothermal atomic absorption spectrometry (ETAAS) with Zeeman effect background corrector using NH4NO3, Sc, Pd, Sc + NH4NO3, Pd + NH4NO3, Sc + Pd and Sc + Pd + NH4NO3 as chemical modifiers. A comprehensive comparison was made among the modifiers and without modifier in terms of pyrolysis and atomization temperatures, atomization and background absorption profiles, characteristic masses, detection limits and accuracy of the determinations. Sc + Pd + NH4NO3 modifier mixture was found to be preferable for the determination of analytes in soil and sediment certified and standard reference materials, and sea water samples because it increased the pyrolysis temperature up to 900 °C for Cd, 1350 °C for Cu and 1300 °C for Pb. Optimum masses of mixed modifier components found are 20 μg Sc + 4 μg Pd + 8 μg NH4NO3. Characteristic masses of Cd, Cu and Pb obtained are 0.6, 5.3 and 15.8 pg, respectively. The detection limits of Cd, Cu and Pb were found to be 0.08, 0.57 and 0.83 μg l−1, respectively. Depending on the solid sample type, the percent recoveries were increased up to 103% for Cd, Cu and Pb by using the proposed modifier mixture. The accuracy of the determination of analytes in the sea water samples was also increased.  相似文献   

19.
The effect of Na, Mg, Ca and Sr as their nitrate, chloride and sulfate salts and seasalt, with and without the use of palladium, on the determination of arsenic by electrothermal atomic absorption spectrometry was investigated. In the absence of any stabilizing agent, arsenic was partially lost as molecular species at low temperatures. The effect of salts on the shape of the atomization signal, the integrated absorbance and the stabilizing effect were highly dependent both on their nature and mass. By trapping arsenic, oxide species resulting from the decomposition of nitrate salts induced a high stabilization effect depending on their vaporization temperatures: MgO~CaO>SrO>Na2O. The stabilization effect of chlorides occurred about 200?°C lower and depended on mass, volatility and hydrolytic properties: SrCl2>CaCl2>MgCl2~NaCl. The effect of sulfates was mainly dependent on their decomposition/vaporization mechanisms, and in the presence of Na2SO4 or CaSO4 a strong chemical interference effect was observed. Palladium stabilized arsenic in the presence of nitrates, chlorides or even sulfates, leading to a similar delaying effect, signal shape and integrated absorbance. Seasalt induced also important modifications to the atomization signal of As. Moreover, an interference effect was observed, which could probably be attributed to the simultaneous vaporization of sulfate in seasalt. In seawater, Pd suppressed this interference effect and permitted to use a high pyrolysis temperature up to 1400?°C to remove the major part of the seawater matrix before atomization. Under optimized conditions, the detection limit for As obtained in unmodified seawater in the presence of Pd was 0.34 μg L–1 for a 10 μl sample.  相似文献   

20.
The interference caused by sulphate (as the sodium salt) in the electrothermal atomization atomic absorption analysis of selenium was investigated for prereduced and unreduced palladium nitrate modifiers. Kinetic parameters of the selenium atomization were calculated for both types of modifier with varying amounts of sulphate added. Prereduced palladium was a better modifier since it tolerated higher amounts of interferent. For high levels of interferent, the kinetic parameters approached that of selenium without modifier. It was postulated that the interference was caused by the formation of palladium sulphate which reduces the number of active palladium sites available for selenium stabilization. The poorer performance of the unreduced modifier was explained in that the formation of stabile palladium sulphate hindered the reduction of Pd(II) to palladium metal which was needed for the selenium stabilization. Sulphate only interfered on the high temperature stabilization process; the low temperature stabilization, linked to the formation of a [Pd,Se,O] compound, was unaffected. The results support earlier literature reports that selenium loss occurs by covolatilization with the matrix and gives a reason why palladium modifiers are rendered useless by the sulphate interferent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号