首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Summary A rapid and sensitive method for determining 2-furaldehyde (FUR) and 5-hydroxymethyl-2-furaldehyde (HMF) in apple juices and juice concentrates has been developed. The method for FUR and HMF involves the solid-liquid extraction of the juice by using a C-18 cartridge prior to reversed-phase separation with detection at 280 nm. The mobile phase was acetonitrile-water (8/92, v/v) at a flow rate of 1.0 ml/min. Recoveries from apple juices and juice concentrates spiked at different levels ranged from 94.1 to 104.0 (FUR) and 94.5 to 100.5 (HMF). The quantification limit for both, FUR and HMF, was 5 ppb.  相似文献   

2.
采用共沉淀法制得分别以NaOH、Na_2CO_3和Na_2CO_3/NaOH为沉淀剂的CuZnAl-1、CuZnAl-2和CuZnAl-3催化剂,采用X射线衍射(XRD)、N2吸附-脱附、H_2-程序升温还原(H_2-TPR)、热重和NH_3-程序升温脱附(NH3-TPD)等方法对催化剂进行了表征,并在固定床反应器上研究了沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响。结果表明,糠醛加氢在三种催化剂上均有较高转化率,而CuZnAl-3催化剂对糠醇有较高选择性。沉淀剂对CuZnAl催化剂的物相结构、比表面积、酸性和氧化还原性均有较大影响。以Na_2CO_3/NaOH为沉淀剂得到的CuZnAl-3催化剂具有适宜的比表面积、CuO晶相、较弱的酸性位,且表面CuO易于还原,这些因素有利于催化反应生成糠醇。CuZnAl-3催化剂上糠醛气相加氢制糠醇优化工艺参数为:常压、反应温度180℃、氢醛物质的量比为5∶1、糠醛体积空速0.3h~(-1);糠醛转化率为99.4%,糠醇选择性为98.3%。  相似文献   

3.
采用化学还原法在不同单一和复配溶剂体系中制备了一系列NiCoB非晶态合金催化剂,对其液相糠醛加氢性能进行了考察,并采用N_2吸附-脱附等温线、ICP、FE-SEM、HRTEM、XRD、XPS等手段进行了表征。结果表明,在相同反应条件下,制备溶剂的表面张力、黏度、极性大小和溶解度常数等对NiCoB非晶态合金催化剂的组成、形貌和结构及其糠醛加氢反应性能均产生重要影响。由甲醇/乙二醇复配溶剂(MEG,体积比1∶1)制备的NiCoB-MEG催化剂具有最理想的糠醛液相加氢制糠醇性能,糠醛转化率达到96.4%,糠醇选择性达到83.49%,这可归因于甲醇和乙二醇之间的协同作用促进了金属组分的分散和还原。  相似文献   

4.
采用分步沉淀过程制得质量比m(CuO)∶m(MgO)∶m(Al_2O_3)为25∶26∶49的CuMgAl类水滑石前驱体,经过不同温度焙烧制得CuMgAl-t催化剂。通过BET、热重、XRD、H_2-TPR和CO_2-TPD对催化剂进行表征,在固定床中考察CuMgAl-t催化剂催化糠醛气相加氢制糠醇的性能。结果表明,焙烧温度影响催化剂活性、稳定性及对产物的选择性,低温焙烧的催化剂经还原后可获得较多活性中心,高温焙烧的催化剂表面具有更多的碱性位,CuMgAl催化剂经450℃焙烧表面存在适宜的活性中心和碱性位。在常压、反应温度180℃、氢醛物质的量比5∶1、糠醛体积空速0.3h~(-1)的条件下,CuMgAl-450催化剂上糠醛的转化率和糠醇的选择性分别达到98.64%和97.66%。  相似文献   

5.
Furfural, a byproduct formed during the thermal/chemical pre-treatment of hemicellulosic biomass, was degraded to methane and carbon dioxide under anaerobic conditions. The consortium of anaerobic microbes responsible for the degradation was enriched using small continuously stirred tank reactor (CSTR) systems with daily batch feeding of biomass pretreatment liquor and continuous addition of furfural. Although the continuous infusion of furfural was initially inhibitory to the anaerobic CSTR system, adaptation of the consortium occurred rapidly with high rates of furfural addition. Addition rates of 7.35 mg furfural/700-mL reactor/d resulted in biogas productions of 375%, of that produced in control CSTR systems, fed the biomass pretreatment liquor only. The anaerobic CSTR system fed high levels of furfural was stable, with a sludge pH of 7.1 and methane gas composition of 69%, compared to the control CSTR, which had a pH of 7.2 and 77% methane. CSTR systems in which furfural was continuously added resulted in 80% of the theoretically expected biogas. Intermediates in the anaerobic biodegradation of furfural were determined by spike additions in serum-bottle assays using the enriched consortium from the CSTR systems. Furfural was converted to several intermediates, including furfuryl alcohol, furoic acid, and acetic acid, before final conversion to methane and carbon dioxide.  相似文献   

6.
糠醇(FOL)作为一种重要且多用途的有机化工原料,可以有效地转化为各种高价值的化学品,如糠醛树脂、脲醛树脂、酚醛树脂、果酸、增塑剂和火箭燃料等。以糠醛(FAL)、木糖和果糖为原料经催化加氢制备FOL的绿色生产工艺,具有良好的应用前景和研究价值。本文系统总结了近年来国内外以FAL、木糖、果糖为原料制备FOL的研究现状,从催化剂类型、催化效率和催化机理等方面对制备FOL的催化剂进行了总结,并在此基础上对催化加氢制备FOL的发展趋势进行了展望,为开发更为新型、高效、绿色、稳定的催化剂体系提供理论指导和有益借鉴。  相似文献   

7.
Transition metal oxides (TMOs) and actinide ones (AnOs) have been widely applied in catalytic reactions due to their excellent physicochemical properties. However, the reaction pathway and mechanism, especially involving TM–An heterometallic centers, remain underexplored. In this respect, relativistic density functional theory (DFT) was used to examine uranium-doped zinc, copper, and nickel oxides for their catalytic activity toward the conversion of furfural to furfuryl alcohol. A comparison was made with their undoped TMOs. It was found that the three TMOs were capable of catalyzing the reaction, where the free energies of adsorption, hydrogenation, and desorption fell between −33.93 and 45.00 kJ/mol. The uranium doping extremely strengthened the adsorption of CuO-U and NiO-U toward furfural, making hydrogenation or desorption much harder. Intriguingly, ZnO-U showed the best catalytic performance among all six catalyst candidates, as its three reaction energies were very small (−10.54–8.12 kJ/mol). The reaction process and mechanism were further addressed in terms of the geometrical, bonding, charge, and electronic properties.  相似文献   

8.
Layered double hydroxides (LDHs) and their derivatives have been reported to be widely used as heterogeneous catalysts in various reactions. Herein, Ni‐Fe LDHs with the controlled Ni/Fe molar ratios (2:1, 3:1, 4:1) were synthesized via an easy hydrothermal method, which were used to catalyze the selective reduction of biomass‐derived furfural into furfuryl alcohol using 2‐propanol as a H‐donor under autogenous pressure and characterized using FT‐IR, XRD, TGA, BET, SEM, NH3‐TPD, and CO2‐TPD. It was found that the LDH with a Ni/Fe molar ratio of 3:1 demonstrated the best catalytic activity among the LDHs with different Ni/Fe molar ratios, which showed 97.0% conversion of furfural and 90.2% yield of furfuryl alcohol at 140°C for 5 hr. This was attributable to the synergistic effect of acidic sites and basic sites of the catalyst.  相似文献   

9.
The ethanologenic bacteria Escherichia coli strains KO11 and LYO1, and Klebsiella oxytoca strain P2, were investigated for their ability to metabolize furfural. Using high performance liquid chromatography and 13C-nuclear magnetic resonance spectroscopy, furfural was found to be completely biotransformed into furfuryl alcohol by each of the three strains with tryptone and yeast extract as sole carbon sources. This reduction appears to be constitutive with NAD(P)H acting as electron donor. Glucose was shown to be an effective source of reducing power. Succinate inhibited furfural reduction, indicating that flavins are unlikely participants in this process. Furfural at concentrations >10 mM decreased the rate of ethanol formation but did not affect the final yield. Insight into the biochemical nature of this furfural reduction process may help efforts to mitigate furfural toxicity during ethanol production by ethanologenic bacteria.  相似文献   

10.
The catalytic activity of ruthenium(II) bis(diimine) complexes cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](Z)2 ( 1 , Z = CF3SO3; 2 , Z = (3,5‐(CF3)2C6H3)4B, i.e. BArF) and cis‐[Ru(4,4′‐Cl2bpy)2(OH2)2](Z)2 ( 3 , Z = CF3SO3; 4 , Z = BArF) for the hydrogenation and/or the hydrogenolysis of furfural (FFR) and furfuryl alcohol (FFA) was investigated. The molecular structures of cis‐[Ru(4,4′‐Cl2bpy)2(CH3CN)2](CF3SO3)2 ( 3 ′) and dimeric cis‐[(Ru(4,4′‐Cl2bpy)2Cl)2](BArF)2 ( 5 ) were characterized by X‐ray crystallography. The structures are consistent with the anticipated reduction in steric hindrance about the ruthenium centers in comparison with corresponding complexes containing 6,6′‐Cl2bpy ligands. While compounds 1 , 2 , 3 , 4 are all active and highly selective catalysts for the hydrogenation of FFR to FFA under modest reaction conditions, 3 and 4 showed decreased activity. This is best explained in terms of reduced Lewis acidity of the Ru2+ centers and reduced steric hindrance about the metal centers of catalysts 3 and 4 . cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](BArF)2 ( 2 ) also displayed high catalytic efficiency for the hydrogenation of FFA to tetrahydrofurfuryl alcohol. Presumably, this is because coordination of C═C bonds of FFA to the ruthenium center is poorly inhibited by non‐coordinating BArF counterions. Interestingly, cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](CF3SO3)2 ( 1 ) showed some catalytic activity in ethanol for the hydrogenolysis of FFA to 2‐methylfuran, albeit with fairly modest selectivity. Nonetheless, these results indicate that ruthenium(II) bis(diimine) complexes need to be further explored as catalysts for the hydrogenolysis of C―O bonds of FFR, FFA, and related compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号