首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
以溶于十八烯的Se作为Se前驱体,在无膦条件下制备得到了具有较高量子产率的Mn:ZnSe纳米晶.为了进一步提高纳米晶的稳定性和发光强度,运用外延生长的方法进行ZnS壳层包覆并得到了具有核-壳结构的Mn:ZnSe/ZnS纳米晶.X射线衍射、透射电子显微镜及吸收和荧光光谱测试结果表明,该方法合成的Mn:ZnSe纳米晶以及核-壳结构Mn:ZnSe/ZnS纳米晶均为闪锌矿结构,具有良好的单分散性,包覆ZnS外壳层后量子产率可达到60%以上.此外,对ZnS壳层厚度和Mn2+的掺杂量对Mn:ZnSe/ZnS纳米晶发光强度的影响及发光机制也进行了初步讨论.  相似文献   

2.
以Zn粉和S粉为原料,Au纳米颗粒为催化剂,采用低温(450℃)化学气相沉积法(CVD),在Si(100)衬底上制备了未掺杂和Mn2+掺杂的ZnS微纳米结构.利用X射线衍射仪(XRD)、能量弥散X射线谱(EDS)、场发射扫描电子显微镜(SEM)和光致发光光谱(PL)等测试手段对样品的结构、成分、形貌和发光性能进行了分析.结果表明,所得ZnS样品均为六方纤锌矿结构,未掺杂的ZnS为微纳米球,在波长为450和463 nm处有2个发光强度较大的蓝光峰;Mn2+掺杂ZnS为纳米线,在波长479和587 nm处分别有1个微弱的蓝光峰和1个强度相对较大的红光峰.此外,还对ZnS微纳米结构的形成过程进行了探讨,并提出了可能的形成机理.  相似文献   

3.
以L-半胱氨酸为表面修饰剂制备了稳定性和水溶性均优的ZnS∶Mn2+纳米晶,并应用于叶酸的检测。在pH 7.4的KH2PO4-Na2HPO4 缓冲溶液中,叶酸的加入使ZnS∶Mn2+体系的荧光发生猝灭,荧光强度的变化与叶酸浓度呈良好的线性关系,其线性范围为1.0×10-6~7.0×10-5 mol?L-1 (4.4×10-4~3.1×10-2 g?L-1),方法检出限为9.6×10-7 mol?L-1 (4.2×10-4 g?L-1)。该方法用于叶酸片剂和健康人尿液中叶酸的测定,结果满意。采用荧光光谱、紫外可见吸收光谱及X-ray光谱等研究了ZnS∶Mn2+纳米晶及其水溶液的特性,通过热力学参数对叶酸测定的可能机理进行了探讨。  相似文献   

4.
本文以巯基丙酸为稳定剂,采用共沉淀法合成ZnS∶Mn量子点,然后使用核外延法制备了具有将紫外光转红光性能的核壳结构ZnS∶Mn/ZnS量子点转光剂,并使用红外(IR)光谱,透射电镜(TEM)对其官能团结构和形貌进行了表征,采用紫外-可见吸收光谱和荧光光谱对其光学性能进行了研究。另外,考察了Mn的掺杂量,放置时间和不同pH的缓冲溶液对ZnS∶Mn/ZnS量子点荧光的影响。  相似文献   

5.
设计了一种新的乙酸酐改性魔芋葡苷聚糖(KGM-AE)作为高分子模板,通过调节模板剂的改性度、模板剂溶液浓度以及Zn2+离子浓度,探讨了ZnS纳米粒子形成的机理,制备出了大小及形貌可控的纳米ZnS。利用IR、ICP-AES、XRD、TEM等对ZnS结构进行了表征,并测定了纳米ZnS光限幅性能,结果显示纳米ZnS溶液均呈现出明显的光限幅性能。  相似文献   

6.
本文采用水热合成方法,在120℃碱性条件下制备出形貌均一的短棒状α-FeOOH纳米粒子,对其进行了金属离子Mn的掺杂。系统研究了Mn离子掺杂对产物物相结构和形貌的影响,对产物进行了X射线衍射(XRD)、红外光谱(IR)、穆斯堡尔谱(MES)、场发射扫描电镜(FE-SEM)和高分辨透射电子显微镜(HRTEM)表征。结果表明:低浓度Mn离子掺杂对α-FeOOH的形成起了形貌和物相调控作用。α-FeOOH纳米棒的长径比随着Mn离子加入量的增大逐渐增加;当nMn(Ⅱ)/nFe(Ⅲ)=0.30时,产物变成了α-(Fe,Mn)OOH和MnFe2O4的混合物,形貌为纳米棒和纳米颗粒。  相似文献   

7.
在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH2)2CS为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS球状颗粒。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析。通过对不同粒径的ZnS纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估。实验结果表明:在表面活性剂CTAB的作用下,随着反应时间的增加,生成的ZnS晶核生长成纳米颗粒,然后ZnS纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm的ZnS纳米球,但制备的ZnS产物的晶体结构均为立方纤锌矿结构。随着ZnS粒径的增加,样品的紫外吸收峰从418nm逐渐蓝移到362nm,而PL发射峰位的峰强随着粒径的增大而增强。光催化结果显示,反应12h制备的ZnS纳米球的光催化性能最佳。  相似文献   

8.
纪元  赵军  董兵辉  付涛 《合成化学》2013,21(1):80-82,85
采用反胶束法制备了SiO2包裹的ZnS∶Mn/ZnS量子点(1)。1的UV吸收峰在295 nm附近,低于体相ZnS(约340 nm);1中Mn2+含量升高,ZnS基质的缺陷荧光发射峰减弱,595 nm处的Mn2+特征荧光发射峰增强;但Mn2+含量过高时产生荧光淬灭。光学显微镜和透射电镜分析表明,1分散性较好,内核呈结晶态;Mn2+含量为2.2%时,1的内核直径和SiO2壳层厚度分别为6 nm和5 nm左右。  相似文献   

9.
表面修饰CdS和(CdS)ZnS纳米晶的性能研究   总被引:5,自引:1,他引:5  
在水相中合成了CdS纳米微粒,以ZnS对其进行表面修饰,得到具有核壳结构的(CdS)ZnS水溶性纳米晶。采用红外光谱、X射线衍射(XRD)、透射电镜(TEM)表征其粒度和形貌,紫外-可见吸收光谱(UV)、荧光光谱表征其光学特性。制得的CdS近似呈球形,直径为8nm;CdS纳米颗粒表面经ZnS修饰后,其荧光发射峰强度显著增强,表面态发射减弱。  相似文献   

10.
采用预聚法和溶胀法制备了具备光学透明性和可加工性的半导体纳米复合材料ZnS/PMMA. 用透射电镜(TEM)观察了ZnS纳米粒子在聚合物基体中的形貌. 结果表明, 基体中ZnS为六方晶型. 比较了分别以含锌微凝胶(ZnP)和ZnCl2为Zn2+源时,ZnS在基体中的生长情况. 紫外吸收和荧光光谱表明,掺杂了ZnS后的PMMA基体在280 nm处出现了一个新的吸收峰和强的荧光峰.  相似文献   

11.
A fast decay emission peaking at 645 nm with a decay lifetime within the experimental resolution of 0.14 micros is observed in ZnS:Mn2+ nanoparticles. This short-lived signal is also observed in pure ZnS and MgS: Eu3+ nanoparticles, which has nothing to do with Mn(2+)-doped ions but is from the deep trap states of the host materials. The short-lived component decreases in intensity relative to the Mn2+ emission at higher excitation powers, while it increases in intensity at low temperatures and shifts to longer wavelengths at longer time delays. Our observations demonstrated further that the emission of Mn2+ in ZnS: Mn2+ nanoparticles behaves basically the same as in bulk ZnS: Mn2+; the fast decay component is actually from the intrinsic and defect-related emission in sulfide compounds.  相似文献   

12.
This paper reports that 4-mercaptophenylacetic acid functionalized Mn2+-doped ZnS nanoparticles (4-MPAA-ZnS-Mn2+ NPs) as fluorescent probes for the detection of copper ions in solution. The fluorescence quenching was due to the aggregation of copper ions with 4-MPAA-ZnS-Mn2+ NPs. These aggregations were confirmed by using UV lamp, UV–visible spectroscopy and dynamic light scattering (DLS). These 4-MPAA-ZnS-Mn2+ NPs were applied as fluorescent probes to detect copper ions in aqueous solution.  相似文献   

13.
Silica-coated ZnS:Mn nanoparticles were synthesized by coating hydrophobic ZnS:Mn nanoparticles with silica shell through microemulsion. The core–shell structural nanoparticles were confirmed by X-ray diffraction (XRD) patterns, high-resolution transmission electron microscope (HRTEM) images and energy dispersive spectroscopy (EDS) measurements. Results show that each core–shell nanoparticle contains single ZnS:Mn nanoparticle within monodisperse silica nanospheres (40 nm). Photoluminescence (PL) spectroscopy and UV–vis spectrum were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnS:Mn nanoparticles, the silica-coated ZnS:Mn nanoparticles have the improved PL intensity as well as good photostability. The obtained silica-coated ZnS:Mn nanoparticles are water-soluble and have fluorescence sensitivity to Cu2+ ions. Quenching of fluorescence intensity of the silica-coated nanoparticles allows the detection of Cu2+ concentrations as low as 7.3 × 10−9 mol L−1, thus affording a very sensitive detection system for this chemical species. The possible quenching mechanism is discussed.  相似文献   

14.
The fabrication, structure, electrochemical properties, and electrocatalytic properties of a manganese(III)-substituted Dawson-type phosphopolyoxotungstate, alpha 2-K7P2W17O61(Mn3+.OH2).12H2O (P2W17Mn), entrapped in polypyrrole (PPy) film have been studied. The hybrid film was prepared by potentiostatic polymerization from aqueous solution containing 20 mM pyrrole (Py) and 2 mM P2W17Mn on a pyrolytic graphite (PG) surface. Chronoamperometry, Raman spectroscopy, UV-visible absorption spectroscopy, and cyclic voltammetry were used to monitor and characterize the growth, structure, and properties of the film. The chronoamperometric curve shows that P2W17Mn can catalyze the electrochemical polymerization of Py. The Raman spectrum suggests that the doped P2W17Mn has little effect on the structure of PPy film. The P2W17Mn/PPy film exhibits good voltammetric response in both the acidic aqueous and acetonitrile solutions. At pH 1.0, the molar ratio of pyrrole to P2W17Mn7- in the hybrid film is 21.1:1, quite close to the expected ratio of 21.2:1 for a PPy film with a +0.33 oxidation level per pyrrole moiety and doped with an anion with a charge of 7. The influence of solution pH on P2W17Mn7- in the film is much smaller than that in the aqueous solution. During the potential scanning in 0.1 M LiClO4 acetonitrile solution, P2W17Mn7- was slowly released from the hybrid film and electrolyte ions (Li+ and ClO4-) were inserted into the film. This was identified by cyclic voltammetry and UV-visible spectroscopy. Additionally, the hybrid film can effectively catalyze the reduction of hydrogen peroxide and nitrite.  相似文献   

15.
Optical and structural properties of Mn2+-doped ZnS nanoparticles in an organic matrix are experimentally and theoretically studied. The nanoparticles, which were produced by the sol-gel method, are nearly monodisperse with a diameter of approximately 3 nm and show the characteristic orange-red luminescence of Mn2+ centers in a crystalline ZnS matrix. The absorption spectrum of the embedded ZnS nanoparticles is slightly blue shifted and broadened compared to the reference system containing ZnS microparticles. This blue shift is caused by quantum size effects, whereas the broadening is due to defects such as lattice distortions, and vacancies, which are probably located close to the surface in the case of small particles. With increasing temperature the absorption spectra shift to the red and are broadened due to thermal activated diffusion of ions close to the surface. In contrast, the spectral feature of the emission spectra via the Mn2+ center is nearly unchanged compared to the ZnS microparticles. Furthermore, the quantum efficiency is increased and the decay time of the electron-hole pairs is shortened to the nanosecond regime because of the enhanced probability of the electron-hole pairs to see the Mn2+ center. Therefore, the only effect of doping of ZnS nanoparticles with Mn2+ center is the suppression of the relaxation of electron-hole pairs via surface defects generating a highly efficient and fast relaxation of the electron-hole pairs via the Mn2+ center.  相似文献   

16.
ZnS:Mn2+ polystyrene (PS) core-shell structures and ZnS:Mn2+ hollow spheres were prepared by a sonoehemical deposition approach. Transmission electron micrograph (TEM) studies show that the PS surface is covered by a thin shell consisted of ZnS: Mn2+ nanoparticles with an average size of 9 nm. ZnS: Mn2+ hollow spheres were obtained by heating the core-shell particles in air at 500 ℃ to drive off PS. The photoluminescence spectrum for the emission band of Mn2+ peaked at 540 nm, and a 45 nm blue shift compared to that of corresponding bulk sample, was discussed based on the Mn-O octahedral distortion induced by shell structure.  相似文献   

17.
Manganese and molybdenum mixed oxides in a thin film form were deposited anodically on a platinum substrate by cycling the electrode potential between 0 and +1.0 V vs Ag/AgCl in aqueous manganese(II) solutions containing molybdate anion (MoO(4)2-). A possible mechanism for the film formation is as follows. First, electrooxidation of Mn2+ ions with H2O yields Mn oxide and protons. Then, the protons being accumulated near the electrode surface react with MoO(4)2- to form polyoxomolybdate through a dehydrated condensation reaction (by protonation and dehydration). The condensed product coprecipitates with the Mn oxide. Cyclic voltammetry of the Mn/Mo oxide film-coated electrode in aqueous 0.5 M Na2SO4 solution exhibited a pseudocapacitive behavior with higher capacitance and better rate capability than that of the pure Mn oxide prepared similarly, most likely as a result of an increase in electrical conductivity of the film. Electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy clearly demonstrated that the observed pseudocapacitive behavior results from reversible extraction/insertion of hydrated protons to balance the charge upon oxidation/reduction of Mn3+/Mn4+ in the film.  相似文献   

18.
Mn2+-doped ZnS nanoparticles with different Mn-doping concentrations stabilized by hydroxypropyl cellulose (HPC) have been synthesized in ethanolic solutions and coatings. Their optical and structural properties have been characterized by means of UV-vis spectroscopy, luminescence spectroscopy, high resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS). Solutions and coatings exhibit a strong luminescence at 590 nm when excited with UV light showing that Mn2+ is incorporated into the ZnS nanoparticles. The highest luminescence intensity is obtained with an Mn2+ concentration of 2 mol%. HRTEM and SAXS investigations show that the particles are crystalline and are 3 ± 0.5 nm in size. Irradiation of the coatings with UV light leads to a photochemical oxidation of the particles, as shown by the decreasing absorption of the coating with irradiation time and a blue shift of the absorption maximum. Furthermore, the luminescence intensity first strongly increases and then decreases completely with UV-irradiation time. Both phenomena can be explained by the photochemical oxidation of the particles.  相似文献   

19.
利用静电纺丝法与气固反应相结合, 成功地制备了硫化锌掺锰/聚乙烯醇复合纳米纤维, 并对所制备的复合物进行了表征, 探讨了复合物的结构及其性能.  相似文献   

20.
CdS, CdS:Mn, ZnS, ZnS:Mn and ZnS:Tb nanoparticles were prepared by using carboxylic-containing copolymer, polystyrene-maleic anhydride (PSM), as template. Average particle size, 2.5 nm for CdS nanoparticles, is deduced from UV-vis absorption spectra and consistent with the observation of TEM. Characteristic emissions of the doping ions can be observed and the energy transfer from the host to the doping ions is verified. Fourier transform infrared (FTIR) spectra were studied to confirm the bonding effect of the copolymer and the metal ions. PSM hydrolyzed and chelated metal ions by its carboxylic group, and then performed as a protection layer after the formation of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号