首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environment friendly thermosetting composites were prepared by blending wheat gluten (WG) as matrix, calcium carbonate (CaCO3) as filler and glycerol as plasticizer followed by compression molding the mixture at 120 ℃ to crosslink the WG matrix. Morphology observation showed that the CaCO3 particles were finely dispersed in matrix. Incorporation of CaCO3 up to 10 wt% into the composites caused Young's modulus and tensile strength to increase markedly. On the other hand, the moisture absorption and elongation at break decreased slightly.  相似文献   

2.
Environment friendly thermosetting composites were prepared by blending wheat gluten(WG) and rice protein (RP) at different weight ratios with glycerol as plasticizer followed by compression molding the mixture at 120℃to crosslink the proteins.Reducing agent of sodium bisulfate and sodium sulfite and crosslinking agent formaldehyde were used to adjust the properties of the composites.Morphology,moisture absorption and tensile properties were evaluated.The results showed that formaldehyde could increase t...  相似文献   

3.
Environmentally friendly biocomposites were prepared by blending wheat gluten(WG)as a matrix, hydroxyethyl cellulose(HEC)as a filler,and glycerol as a plasticizer,followed by thermo-molding of the mixture at 120°C for crosslinking the matrix.Moisture absorption,tensile properties,dynamic mechanical analysis,and dynamic rheology were evaluated in relation to the glycerol content.Tensile strength and modulus drop dramatically with increasing glycerol content,which is accompanied by significant depression in the glass transition temperature and improvement in the extensibility of the biocomposites.  相似文献   

4.
Recently, unsaturated polyester resin (UPR) and silica nanocomposite prepared by mechanical process is the one of the promising composite materials. In this study, the effects of silica as filler on mechanical, thermal, and morphological properties of unsaturated polyester-based composite were investigated. Mechanical properties such as tensile strength, elongation and Young's modulus increase with the addition of silica nanoparticle up to 1.0 wt%, and then decrease, over 1.0 wt%. Morphological surface of composite reveals that well-dispersed silica in the matrix occurred in low concentration. However, increasing of silica concentration causes aggregation of particles. Enhancement of mechanical properties strongly corresponds to strong adhession force of silica with the matrix and it influnced by well-disperse silica particles on the whole surface of composite. Thermal characterization and analysis of major functional group of the composites were also performed and described in this paper.  相似文献   

5.
聚氯乙烯/聚丙烯酸丁酯/白泥纳米复合材料的研究   总被引:6,自引:0,他引:6  
通过多步交换反应及扩散-聚合的方法,使聚丙烯酸丁酯被嵌入到改性层状结构的白泥层间,得到白泥-聚丙烯酸丁酯纳米复合物的微米粒子;然后将聚氯乙烯与白泥-聚丙烯酸丁酯进行熔融共混,制得具有一一特性的有机-无机纳米复合材料,并对复合材料的缺口冲击强度及动态力学性能进行了研究,结果表明,白泥-聚丙烯酸酯含量为5.0wt%时,复合材料的力学性能最佳;聚氯乙烯与高含量的白泥-聚丙烯酸丁酯(分别为25.0wt%和50.0wt%)形成的复合材料,在聚氯乙烯的玻璃化转变温度之前,储能模量出现先降低而后增加的过程。  相似文献   

6.
This paper studies the effects of zinc oxide (ZnO) on morphology and mechanical properties of pure polyoxymethylene (POM) and POM/ZnO composites. POM/ZnO composites with varying concentration of ZnO were prepared by melt mixing technique in a twin screw extruder. The dispersion of ZnO particles on POM composites was studied by scanning electron microscope (SEM). It is observed that the dispersion of ZnO particles is relatively good. The mechanical properties of the composites such as tensile strength, stress at break, Young's modulus and impact strength were measured. Increasing content of ZnO up to 4.0 wt% increases the impact strength of POM. Addition of ZnO beyond 4.0 wt% decreases the impact strength. The composites containing ZnO content greater than 2.0 wt% show increased Young's Modulus. The tensile strength and stress at break decrease with increasing ZnO content. This may be due to the compatibility between ZnO and POM.  相似文献   

7.
Wheat gluten (WG)/silica (SiO2) hybrids were prepared through in-situ synthesis of SiO2 in WG dispersion of aqueous ammonia. The hybrids with different SiO2 contents were mixed with glycerol plasticizer to form cohesive dough and the dough was compressively molded to form cross-linked sheets. Morphology, moisture absorption, protein solubility in water, tensile mechanical properties and dynamic rheological behavior of the WG/SiO2 composites were investigated in relation to SiO2 contents. Supported by the National Natural Science Foundation of China (Grant No. 50773068) and Natural Science Foundation of Zhejiang Province (Grant No. Y407011)  相似文献   

8.
In the present study, a series of iPP/SiO2 nanocomposites, containing 1, 2.5, 5, 7.5, 10 and 15 wt% SiO2 nanoparticles, were prepared by melt mixing in a twin screw co-rotating extruder. Poly(propylene-g-maleic anhydride) copolymer (PP-g-MA) containing 0.6 wt% maleic anhydride content was added to all nanocomposites at three different concentrations, 1, 2.5 and 5 wt%, based on silica content. Mechanical properties such as tensile strength at break and Young’s modulus were found to increase and to be mainly affected by the content of silica nanoparticles as well as by the copolymer content. For the tensile strength at break as well as for yield point, a maximum was observed, corresponding to the samples containing 2.5-5 wt% SiO2. At higher concentrations, large nanosilica agglomerates are formed that have as a result a decrease in tensile strength. Young’s modulus increases almost linearly on the addition of SiO2, and takes values up to 60% higher than that of neat iPP. Higher concentrations of PP-g-MA resulted in a further enhancement of mechanical properties due to silica agglomerate reduction. This finding was verified from SEM and TEM micrographs. Evidently the surface silica hydroxyl groups of SiO2 nanoparticles react with maleic anhydride groups of PP-g-MA and lead to a finer dispersion of individual SiO2 nanoparticles in the iPP matrix. The enhanced adhesion in the interface of the two materials, as a result of the mentioned reaction, has been studied and proved by using several equations. The increased Vicat point of all nanocomposites, by increasing the PP-g-MA content, can also be mentioned as a positive effect.  相似文献   

9.
聚酰亚胺/二氧化硅纳米尺度复合材料的研究   总被引:72,自引:0,他引:72  
通过正硅酸乙酯(TEOS)在聚酰胺酸(PAA)的N,N’ 二甲基乙酰胺(DMAc),溶液中进行溶胶 凝胶反应,制备出不同二氧化硅含量的聚酰亚胺/二氧化硅(PI/SiO2)复合薄膜材料.二氧化硅含量低于10wt%的样品是透明浅黄色薄膜;二氧化硅含量高于10wt%的样品是不透明棕黄色薄膜.利用红外光谱、扫描电镜、热失重分析、动态力学分析、热膨胀系数测试和应力 应变测试等方法研究了此类材料的结构与性能.结果表明,PI/SiO2纳米复合材料具有较聚酰亚胺更高的热稳定性和更高的模量;线膨胀系数显著降低;拉伸强度和断裂伸长随二氧化硅含量而变化,分别在10wt%和30wt%附近出现最大值  相似文献   

10.
In this research, fully environment-friendly, sustainable and biodegradable ‘green’ composites were fabricated. A novel material comprised of microfibrillated cellulose and laponite clay with different inorganic/organic ratios (m/m) was prepared. The composites were characterized by tensile, bending and water absorption tests as well as dynamic mechanical analysis. The morphologies of these nanocomposites were evaluated through scanning electron microscopy. Results showed considerable improvement of mechanical properties; specifically in elastic modulus, tensile strength and flexural modulus with the addition of nanoclay up to 7.5 wt% nano-clay. The modulus of elasticity increased significantly by about 26 % at 5 wt% nanocaly. The flexural modulus increased by about 90 % at 7.5 wt% nanoclay. However, with an increased load of clay in the nanocomposite, the mechanical properties decreased due to the agglomeration of excessive nanoclay. The storage modulus was significantly increased at high temperature with increasing the load of nanoclay.  相似文献   

11.
研究了甘油增塑谷朊粉/淀粉混合体系的动态流变行为与单轴拉伸力学性能,考察了淀粉与水含量的影响.研究结果表明,含水量10%的混合体系储能模量(G′)随淀粉含量增大而增大,并在100℃出现橡胶平台.增塑谷朊粉在30℃呈现凝胶特性,在80℃出现交联网络结构.淀粉粒子可与小麦蛋白质形成复杂相互作用,阻碍蛋白质链段运动,导致模量与强度增加,断裂伸长率降低.含水量为20%与25%时,水份在淀粉粒子与蛋白质网络间起稀释和润滑作用,拉伸强度与断裂伸长率随淀粉含量的增高而降低.  相似文献   

12.
A new method to obtain composites of phenolic resin reinforced with microfibrillated cellulose with a wide fiber content was established and the mechanical properties were evaluated by tensile test. A linear increase in Young’s modulus was observed at fiber contents up to 40 wt%, with a stabilizing tendency for higher fiber percentages. These results were ratified by measurements of the coefficient of thermal expansion (CTE) relative to fiber content, which indicated a strong thermal expansion restriction rate below 60 wt% fiber content, indicating the effective reinforcement attained by the cellulose microfibrils. The low CTE achieved of 10 ppm/K is one of the important properties of cellulose composites.  相似文献   

13.
Rossells fiber reinforced polypropylene composites were prepared by melt mixing. The fiber content was 20 wt%. Octadecyltrimethoxysilane (OTMS) and maleic anhydride grafted polypropylene (MAPP) were used to improve the adhesion between poly(propylene) (PP) and the fiber. The mechanical, rheological, and morphological properties, and heat distortion temperature (HDT) of the composites were investigated. Tensile strength, impact strength, flexural strength and HDT of MAPP modified PP composites increased with an increase in MAPP content. However, no remarkable effect of MAPP content on the Young's modulus of the composites was found. OTMS resulted in small decreases of tensile strength and Young's modulus, and increase in impact strength. Scanning electron micrographs revealed that MAPP enhanced surface adhesion between the fiber surface and PP matrix.  相似文献   

14.
The mechanical properties for silica hydrogel prepared at physiological conditions are reported in this paper. The mechanical testing was performed in the compression mode determining the mechanical characteristics as a function of aging time in TRIS buffer up to 14 days. In addition to a typically used gradient method for Young’s modulus determination from the stress–strain curves, a new phenomenological model was proposed to describe the experimental data. The mechanical properties were stabilized after 2 days of aging, which was concluded from an increase in Young’s modulus between 90 and 400 kPa, an increase in stress at break between 50 and 100 kPa and by a decrease in relative deformation at break from 0.26 to 0.16. The height of samples was constant in the first three days of aging followed by a decrease by ~20%. Dissolving of silica hydrogel characterized through determination of silica content in TRIS buffer employing the molybdenum method was not found to be responsible for this phenomenon. The phenomenological model is proposed to be used for a reliable evaluation of mechanical properties of silica as well as other hydrogels exhibiting low Young’s modulus.  相似文献   

15.
Lu Y  Weng L  Cao X 《Macromolecular bioscience》2005,5(11):1101-1107
Environmentally friendly starch biocomposites were successfully developed using a colloidal suspension of cottonseed linter cellulose crystallite as a filler to reinforce glycerol plasticized starch (PS). The cellulose crystallites, having lengths of 350 +/- 70 nm and diameters of 40 +/- 8 nm on average, were prepared from cottonseed linters by acid hydrolysis. The dependence of morphology and properties of the PS-based biocomposites on cellulose crystallites content in the range from 0 to 30 wt.-% was investigated by scanning electron microscopy, differential scanning thermal analysis, dynamic mechanical thermal analysis, and measurements of mechanical properties and water absorption. The results indicate that the strong interactions between fillers and between the filler and PS matrix play a key role in reinforcing the resulting composites. The PS/cellulose crystallite composites, conditioned at 50% relative humidity, undergo an increase in both tensile strength and Young's modulus from 2.5 MPa for PS film to 7.8 MPa and from 36 MPa for PS film to 301 MPa. Further, incorporating cottonseed linter cellulose crystallites into PS matrix leads to an improvement in water resistance for the resulting biocomposites. The mechanical behaviors of the starch-based biocomposites as a function of cellulose crystallites content.  相似文献   

16.
Hybrid materials based on silicic acid and polymethyl methacrylate (PMMA) were prepared by in situ bulk polymerization of a silicic acid sol and MMA mixture. Silicic acid sol was obtained by tetrahydrofuran (THF) extraction of silicic acid from water. Silicic acid was prepared by hydrolysis and condensation of sodium silicate in the presence of 3.6 M HCl. As a comparative study, PMMA composites filled by silica particles, which were derived from calcining the silicic acid gel, were prepared by a comparable in situ polymerization. Each set of PMMA/silica composites was subjected to thermal and mechanical studies. Residual THF in PMMA/silicic acid composites impacted the properties of the polymer composites. With increase in silica content, the PMMA composites filled with silica particles showed improved thermal and mechanical properties, whereas a decrease in thermal stability and mechanical strength was found for PMMA composites filled with silicic acid dissolved in THF. With a better compatibility with polymer matrix, silicic acid sol shows better reinforcement than silica particles in PMMA films prepared via blending of the corresponding THF solutions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Polyurethane block copolymer (PU) was synthesized and was followed by a sol-gel reaction with tetraethoxysilane (TEOS) to prepare high performance polyurethane-silica hybrids with shape memory function. Their tensile and shape memory properties were compared as a function of TEOS content and PU hard segment content. A tensile test showed that the mechanical properties were largely influenced by TEOS content, and the maximum elongation-at-break as well as maximum breaking stress and modulus were obtained when TEOS at 10 wt% was used. Shape memory of hybrids was also obtained from a thermomechanical test, and showed good shape retention and shape recovery of more than 80% for all samples. Consequently, by silica hybridization, an improvement in the mechanical properties and shape recovery force of PU could be achieved without any decrease in their shape recovery effect.  相似文献   

18.
Multi-walled carbon nanotube (MWCNT)/poly(glycerol–sebacate–citrate) (PGSC) elastomer composite were prepared and their morphologies, compositions, glass transition temperatures, mechanical properties, water absorption, biodegradation and cytotoxicity were investigated. Results showed that the chemical structures of PGSC elastomers were hardly influenced by the MWCNT loadings, and physical adsorption was thought as the main interaction between the MWCNTs and PGSC matrixes. When the MWCNT loading was 3 wt%, MWCNTs displayed a homogenous dispersion in the matrixes, and the composite's strength and modulus respectively reached 4.4 MPa and 9.2 MPa, increasing by 62.96% and 33.33% than that of pure PGSC matrixes. The degradation rates of the composites tended to decrease with the increase of MWCNT loadings in simulated body fluid (SBF) solution. The composites presented no cytotoxicity especially when the MWCNT loadings were above 1 wt%. We expect the composites can be used as degradable bio-coatings and tissue engineering scaffolds in future.  相似文献   

19.
The high‐speed homogeneous shearing method was applied to prepare nanocomposites of cyanate ester (CE) with liquid polyurethane elastomer (PUR) and silica. To investigate the influence of various components on the morphology and properties of the ternary composites, the binary composites of CE/PUR and CE/silica were also involved in this article. The morphology of the cured materials of binary and ternary systems was investigated by transmission electron microscopy (TEM), and the results show that silica nanoparticles were uniformly distributed in the ternary and binary matrix. Phase separation of elastomer in composites was not observed by TEM. FTIR test and dynamic mechanical analysis (DMA) proved that chemical linking was existent between PUR and CE. Scanning electron microscopy examinations and mechanical properties tests were carried out. The results show that ternary composites displayed higher fracture toughness and impact strength compared with most of the binary systems. This suggests that the addition of PUR and nanosilica can synergistically improve the toughness of CE. DMA studies confirmed that the incorporation of silica can increase the storage modulus and Tg for CE and CE/PUR system, since there are a good adhesion and a strong hydrogen bonding between silica and polymers. The thermal property of ternary composites increases with the increase of silica nanoparticle loading. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1243–1251, 2008  相似文献   

20.
Dynamic mechanical behaviour of natural rubber-silica composites was studied by a frequency sweep method at different temperatures (40 °C,70 °C and 100 °C) using a dynamic mechanical analyzer and a rotorless rheometer, RPA, in an attempt to establish a correlation between the two. The composites with silica content up to 40 phr were studied. It was found that the dependence of dynamic modulus on the frequency as obtained from both the instruments followed a similar trend. This suggests that the dynamic mechanical properties of rubber compounds can be determined even during curing. A correlation could be arrived at between the two sets of data, making it possible to predict one set knowing the other. The impact of silane coupling agent, bis (3-triethoxysilylpropyl tetrasulphide), TESPT, on viscoelasticity was also investigated. The mechanical properties were improved in the presence of TESPT. Additionally, an increase in thermal stability was also observed in the presence of TESPT. Scanning electron micrographs showed the better filler dispersion in the case of silane-coupled silica composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号