首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at <5%. Complementary isothermal (vapour + liquid) equilibria results are reported for the (CO2 + 1-propanol), (CO2 + 2-methyl-1-propanol), (CO2 + 3-methyl-1-butanol), and (CO2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng–Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.  相似文献   

2.
Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa.The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask.The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems.The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model.  相似文献   

3.
Experimental (vapour + liquid) equilibrium results for the binary systems, (methanol + water) at the local atmospheric pressure of 95.3 kPa and at sub-atmospheric pressures of (15.19, 29.38, 42.66, 56.03, and 67.38) kPa, (water + glycerol) system at pressures (14.19, 29.38, 41.54, 54.72, 63.84, and 95.3) kPa and the (methanol + glycerol) system at pressures (32.02 and 45.3) kPa were obtained over the entire composition range using a Sweitoslwasky-type ebulliometer. The relationship of the liquid composition (x1) as a function of temperature (T) was found to be well represented by the Wilson model. Computed vapour phase mole fractions, activity coefficients and the measured values along with optimum Wilson parameters are presented.  相似文献   

4.
The three-phase (vapour + liquid + solid) equilibrium conditions for semi-clathrates formed from three mixtures of (CO2 + N2), in aqueous solutions of tetra-butyl ammonium bromide (TBAB), were measured in an isochoric reactor. The experiments were conducted at temperatures between (281 and 290) K, at pressures between (1.9 and 5.9) MPa and in aqueous TBAB solutions of wTBAB = (0.05, 0.10, and 0.20). The experimental results obtained in this study were compared with previously obtained results for gas hydrates, formed from the same three mixtures of (CO2 + N2) and it was observed that semi-clathrates formed at a substantially lower pressure than did gas hydrates.  相似文献   

5.
2-Propoxyethanol (C3E1) is one of nonionic surfactants which are a particularly interesting class of substances due to both inter-molecular and intra-molecular association. Binary (vapor + liquid) equilibrium data were measured for {2-propoxyethanol (C3E1) + n-hexane} and {2-propoxyethanol (C3E1) + n-heptane} systems at temperatures ranging from (303.15 to 323.15) K. A static apparatus was used in this study. The experimental data were correlated well with a lattice fluid equation of state that combines the multi-fluid non-random lattice fluid model with Veytsman statistics for (intra + inter)-molecular association.  相似文献   

6.
Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO2 + 3-methyl-2-butanol), (CO2 + 2-pentanol), and (CO2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng–Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.  相似文献   

7.
The apparent molar volumes and isentropic compressibility of glycine, l-alanine and l-serine in water and in aqueous solutions of (0.500 and 1.00) mol · kg?1 di-ammonium hydrogen citrate {(NH4)2HCit} and those of (NH4)2HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH4)2HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH4)2HCit}, {alanine + (NH4)2HCit}, and {serine + (NH4)2HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.  相似文献   

8.
Ionic liquids (ILs) and carbon dioxide (CO2) systems have unique phase behavior that has been applied to applications in reactions, extractions, materials, etc. Detailed phase equilibria and modeling are highly desired for their further development. In this work, the (vapor + liquid) equilibrium, (vapor + liquid + liquid) equilibrium, and (liquid + liquid) equilibrium of n-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids with CO2 were measured at temperatures of (298.15, 323.15, 343.15) K and pressure up to 25 MPa. With a constant anion of bis(trifluoromethylsulfonyl)amide, the n-alkyl chain length on the cation was varied from 1-ethyl-3-methyl-imidazolium ([EMIm][Tf2N]), 1-hexyl-3-methyl-imidazolium ([HMIm][Tf2N]), to 1-decyl-3-methyl-imidazolium ([DMIm][Tf2N]). The effects of the cation on the phase behavior and CO2 solubility were investigated. The longer alkyl chain lengths increase the CO2 solubility. The Peng–Robinson equation of state with van der Waals 2-parameter mixing rule with estimated IL critical properties were used to model and correlate the experimental data. The models correlate the (vapor + liquid) equilibrium and (liquid + liquid) equilibrium very well. However, extrapolation of the model to much higher pressures (>30 MPa) can results in the prediction of a mixture critical point which, as of yet, has not been found in the literature.  相似文献   

9.
In this work, new (vapor + liquid) equilibrium data for the (N2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure–composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N2 + n-heptane) system.  相似文献   

10.
The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR–WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR–WS presented the best performance.  相似文献   

11.
Isobaric (vapour + liquid) equilibrium measurements have been reported for the binary mixture of (1-pentanol + propionic acid) at (53.3 and 91.3) kPa. Liquid phase activity coefficients were calculated from the equilibrium data. The thermodynamic consistency of the experimental results was checked using the area test and direct test methods. According to these criteria, the measured (vapour + liquid) equilibrium results were found to be consistent thermodynamically. The obtained results showed a maximum boiling temperature azeotrope at both pressures studied. The measured equilibrium results were satisfactorily correlated by the models of Wilson, UNIQUAC, and NRTL activity coefficients. The results obtained indicate that the performance of the NRTL model is superior to the Wilson and UNIQUAC models for correlating the measured isobaric (vapour + liquid) equilibrium data.  相似文献   

12.
The isothermal and isobaric (vapour + liquid) equilibria for (2,2-dimethoxypropane + methanol) and (2,2-dimethoxypropane + acetone) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependent binary parameters with satisfactory results. Isobaric (vapour + liquid) equilibria data for these systems at p=99.99 kPa are compared with the literature data. Experimental vapour pressure of 2,2-dimethoxypropane are also included.  相似文献   

13.
In this study the phase equilibrium behaviors of the binary system (CO2 + lauric acid) and the ternary system (CO2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.  相似文献   

14.
(Liquid + liquid) equilibrium tie-lines were measured for one ternary system {x1H2O + x2(CH3)2CHOH + (1  x1  x2)CH3C(CH3)2OCH3} and one quaternary system {x1H2O + x2(CH3)2CHOH + x3CH3C(CH3)2OCH3 + (1  x1  x2  x3)(CH3)2CHOCH(CH3)2} at T = 298.15 K and P = 101.3 kPa. The experimental (liquid + liquid) equilibrium results were satisfactorily correlated by modified and extended UNIQUAC models both with ternary and quaternary parameters in addition to binary ones.  相似文献   

15.
A flow mixing calorimeter and a vibrating-tube densimeter have been used to measure excess molar enthalpies HmE and excess molar volumes VmE of {xC2H6 +  (1   x)SF6 }. Measurements over a range of mole fractions x have been made at T =  305.65 K and T =  312.15 K and at the pressures (3.76, 4.32, 4.88 and 6.0) MPa. The pressure 3.76 MPa is close to the critical pressure of SF6, the pressure 4.88 MPa is close to the critical pressure of C2H6, and the pressure 4.32 MPa is midway between these values. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6 }, {xCO2 +  (1   x)C2H4 } and {xCO2 +  (1   x)SF6 }.  相似文献   

16.
The vapour pressures of binary (cyclohexanone + 1-chlorobutane, + 1,1,1-trichloroethane) mixtures were measured at the temperatures of (298.15, 308.15, and 318.15) K. The vapour pressures vs. liquid phase composition data have been used to calculate the excess molar Gibbs free energies GE of the investigated systems, using Barker’s method. Redlich–Kister, Wilson, UNIQUAC, and NRTL equations, taking into account the vapour phase imperfection in terms of the 2-nd virial coefficient, have represented the GE values. No significant difference between GE values obtained with these equations has been observed.  相似文献   

17.
By measuring the (vapour + liquid) equilibrium of {methanol (1) + benzene (2) + NaI} and testing the data using the ternary Gibbs–Duhem equation, the experimental results of the (vapour + liquid) equilibrium with thermodynamic consistency are obtained. It is supposed that the mean activity coefficients of NaI in (methanol + benzene) mixed solvents may be represented by a power series of salt concentration (m1/2). Each parameter of the series was then obtained from the experimental results by the method of least squares. The calculated results show that the activity coefficients of NaI in (methanol + benzene) system with constant composition either decrease as the concentration increases, or decrease at first, then pass through a minimum and increase gradually again. This method is applicable to the determination of electrolytic activity coefficients in mixed non-aqueous solvents.  相似文献   

18.
This work presents new experimental results for carbon dioxide (CO2) solubility in aqueous 2-amino-2-methyl-1-propanol (AMP) over the temperature range of (298 to 328) K and CO2 partial pressure of about (0.4 to 1500) kPa. The concentrations of the aqueous AMP lie within the range of (2.2 to 4.9) mol · dm?3. A thermodynamic model based on electrolyte non-random two-liquid (eNRTL) theory has been developed to correlate and predict the (vapour + liquid) equilibrium (VLE) of CO2 in aqueous AMP. The model predictions have been in good agreement with the experimental data of CO2 solubility in aqueous blends of this work as well as those reported in the literature. The current model can also predict speciation, heat of absorption, enthalpy of CO2 loaded aqueous AMP, pH of the loaded solution, and AMP volatility.  相似文献   

19.
The four-phase equilibrium conditions of (vapor + liquid + hydrate + ice) were measured in the system of (CO2 + 2,2-dimethylbutane + water). The measurements were performed within the temperature range (254.2 to 270.2) K and pressure range (0.490 to 0.847) MPa using an isochoric method. Phase equilibrium conditions of hydrate formed in this study were measured to be at higher temperatures and lower pressures than those of structure I CO2 simple hydrate. The largest difference in the equilibrium pressures of structure I CO2 hydrate and the hydrate formed in the present study was 0.057 MPa at T = 258.3 K. On the basis of the four-phase equilibrium data obtained, the quintuple point for the (ice + structure I hydrate + structure H hydrate + liquid + vapor) was also determined to be T = 266.4 K and 0.864 MPa. The results indicate that structure H hydrate formed with CO2 and 2,2-dimethylbutane is stable exclusively at the temperatures below the quintuple temperature.  相似文献   

20.
The excess molar volumes VmE at T=298.15 have been determined in the whole composition domain for (2-methoxyethanol + tetrahydrofuran + cyclohexane) and for the parent binary mixtures. Data on VmE are also reported for (2-ethoxyethanol + cyclohexane). All binaries showed positive VmE values, small for (methoxyethanol + tetrahydrofuran) and large for the other ones. The ternary VmE surface is always positive and exhibits a smooth trend with a maximum corresponding to the binary (2-methoxyethanol + cyclohexane). The capabilities of various models of either predicting or reproducing the ternary data have been compared. The behaviour of VmE and of the excess apparent molar volume of the components is discussed in both binary and ternary mixtures. The results suggest that hydrogen bonding decreases with alcohol dilution and increases with the tetrahydrofuran content in the ternary solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号