首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
We developed a novel iron‐tetrasulfophthalocyanine‐graphene‐Nafion (FeTSPc‐GR‐Nafion) modified screen‐printed electrode to determine hydrogen peroxide (H2O2) with high sensitivity and selectivity. The nanocomposite film (FeTSPc‐GR‐Nafion) exhibits an excellent electrocatalytic activity towards oxidation of H2O2 at a potential of +0.35 V in the absence of enzyme. A comparative study reveals that the FeTSPc‐GR complexes play a dual amplification role. Amperometric experiment indicates that the sensors possess good sensitivity and selectivity, with a linear range from 2.0×10?7 M to 5.0×10?3 M and a detection limit of 8.0×10?8 M. This sensor has been successfully used to develop the glucose biosensor and has also been applied to determine H2O2 in sterile water.  相似文献   

2.
《中国化学会会志》2018,65(6):735-742
As a novel approach, the effect of Cu2+‐doped indium tin oxide (ITO) on a flexible polycarbonate substrate is considered as an ammonia sensor. The sensor was fabricated using spin‐coating and subsequent annealing at 160°C for 60 min. The constructed sensor morphology accomplished by surface composition was explored using scanning electron microscopy (SEM) and energy dispersiveX‐ray (EDX) spectroscopy. Using the new strategy, a flexible sensor for ammonia determination with a fast response time of less than 7 s and a recovery time of 8 s was achieved. Sensor characteristics, such as sensitivity, recyclability, response/recovery time, selectivity, stability, flexibility, and transmittance of the layers, were examined. The impedance results showed high sensitivity when the constructed sensor was exposed to NH3 concentrations in the range 5–1000 ppm. The results showed that doping ITO with Cu2+ imparted higher electronic charge density to the sensor surface and enhanced the sensitivity of the sensor by a factor of 352% in comparison with that of pure ITO. The sensitivity, fast response, and recovery time with low‐cost materials and deposition procedure suggest an effective and disposable ammonia sensor at room temperature (23°C).  相似文献   

3.
Glassy carbon electrode modified with phosphotungstate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐PW) film was employed for iodate determination. The PLL‐GA‐PW film electrode shows excellent electrocatalytic activity towards iodate reduction with significant reduction of overpotential. Under optimized experimental conditions, a linear range from 5×10?8 to 2.27×10?2 M with a sensitivity of 61.75 μA mM?1 was obtained. Possible interfering species, in iodate determination, were evaluated and the applicability of proposed sensor for iodate estimation in table salt was also demonstrated. The PLL‐GA‐PW film electrode shows fast response, wider linear range, and good selectivity and stability.  相似文献   

4.
We propose an electrochemical sensor based on applying two successive thin layers from a mixture of multiwalled carbon nanotubes‐ionic liquid crystal and crown ether at glassy carbon electrode surface (GC/(CNTs‐ILC)/Crown). The sensor was used for sensitive determination of neurotransmitters based on effective synergism between its components. The compact conducting surface of (CNTs ‐ ILC) with large surface area allowed the assembling of stable host‐guest inclusion complexes between crown ethers and neurotransmitters. The GC/(CNTs‐ILC)/Crown exhibited excellent electro‐catalytic activity toward the determination of serotonin (ST) in a wide linear dynamic range: 0.005 μmol L?1 to 100 μmol L?1. In the concentration range 0.005 μmol L?1 to 1 μmol L?1, the detection limit is 2.03×10?10 mol L?1 and quantification limit is 6.78×10?10 mol L?1 with correlation coefficient 0.999. The sensor was successfully applied for ST detection in human serum samples with satisfied recovery results. The sensor showed excellent analytical performance for the determination of ST in terms of low detection limit, good sensitivity and reproducibility. Furthermore excellent anti‐interference ability and simultaneous determination of ST in presence of other compounds as ascorbic acid, dopamine and antidepressant drug were achieved.  相似文献   

5.
Biosensors based on field‐effect transistor (FET) structures have attracted considerable attention because they offer rapid, inexpensive parallel sensing and ultrasensitive label‐free detection. However, long‐term repeatable detection cannot be performed, and Ag/AgCl reference electrode design is complicated, which has hindered FET biosensors from becoming truly wearable health‐monitoring platforms. In this paper, we propose a novel wearable detection platform based on AlGaN/GaN high‐electron‐mobility transistors (HEMTs). In this platform, a sweatband was used to continuously collect sweat, and a pH detecting unit and a potassium ion detecting unit were formed by modifying different sensitive films to realize the long‐term stable and repeatable detection of pH and potassium ions. Experimental data show that the wearable detection platform based on AlGaN/GaN HEMTs has good sensitivity (pH 3–7 sensitivity is 45.72 μA/pH; pH 7.4–9 sensitivity is 51.073 μA/pH; and K+ sensitivity is 4.94 μA/lgαK+), stability (28 days) and repeatability (the relative standard deviation (RSD) of pH 3–7 sensitivity is 2.6 %, the RSD of pH 7.4–9 sensitivity is 2.1 %, and the RSD of K+ sensitivity is 7.3 %). Our newly proposed wearable platform has excellent potential for predictive analytics and personalized medical treatment.  相似文献   

6.
《Electroanalysis》2006,18(21):2055-2060
Copper nanoparticles (CuNPs) encapsulated by polymeric stabilizer of polyvinylpyrrolidone (PVP) (noted as PVP‐CuNPs) were simply prepared and used to construct an enzymeless glucose sensor on a solid substrate. Sensing and assay performance of the CuNPs‐based sensor to glucose were evaluated in detail. Cyclic voltammetry (CV), chronoamperometry (It) and flow injection amperometry (FIA) revealed a high sensitivity, excellent stability, and good reproducibility in the glucose determination at +0.45 V, which was 200 mV more negative than those in former reports. A detection limit as low as 1.0×10?8 M (signal‐to‐noise=3) and a linear range of 1.0×10?7 M to 5.0×10?3 M were obtained in this study.  相似文献   

7.
A polyvinyl chloride (PVC) membrane based Pr(III) selective electrode was constructed using 1,6,7,12‐tetramine‐2,5,8,11‐tetraoxo‐1(12),6(7)‐di(biphenyl)dodecane (TATODBDD) as a neutral carrier. The sensor exhibits a Nernstian response for Pr(III) ions, a wide concentration range of 3.9×10?7?1.0×10?1 mol/L with a detection limit of 5.0×10?8 mol/L and slope of 19.5 mV/decade. The developed sensor revealed relatively good selectivity and high sensitivity for Pr(III) ions over the other lanthanide ions. The potentiometric response of the sensor is independent in the pH range 2.9–9.5. The advantages of sensor are low resistance, very fast response time (<10 s) with good selectivity. This sensor can be used up to 6 weeks without any divergences in potential response.  相似文献   

8.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

9.
The covalent triazine‐based framework (TDPDB) has been prepared by Friedel‐Crafts polymerization reaction of N,N′‐diphenyl‐N,N′‐di(m‐tolyl)benzidine (DPDB) with 2,4,6‐trichloro‐1,3,5‐triazine (TCT) catalyzed by methanesulfonic acid. The yield of the reaction (94.85%) is very high. TDPDB was provided with Brunauer‐Emmett‐Teller specific surface area of 592.18 m2 g?1 and pore volume of 0.5241 cm3 g?1. TDPDB demonstrated an excellent capacity for capturing iodine (3.93 g g?1) and an outstanding ability to fluorescent sensing to iodine with Ksv of 5.83 × 104 L mol?1. It also showed high fluorescent sensing sensitivity to picric acid.  相似文献   

10.
《Electroanalysis》2018,30(2):320-327
A novel molecularly imprinted polymer (MIP) photoelectrochemical sensor was fabricated for the highly sensitive and selective detection of triclosan. The MIP photoelectrochemical sensor was fabricated using graphite‐like carbon nitride (g‐C3N4) and gold nanoparticles (AuNPs) as photoelectric materials. The MIP/g‐C3N4‐AuNPs sensor used photocurrent as the detection signal and was triggered by ultraviolet light (UV‐Light 365 nm). g‐C3N4‐AuNPs was immobilized on indium tin oxide electrodes to produce the photoelectrochemically responsive electrode of the MIP/g‐C3N4‐AuNPs sensor. A MIP layer of poly‐o‐phenylenediamine was electropolymerized on the g‐C3N4‐AuNPs‐modified electrode to act as the recognition element of the MIP/g‐C3N4‐AuNPs sensor and to enable the selective adsorption of triclosan to the sensor through specific binding. Under optimal experimental conditions, the designed MIP/g‐C3N4‐AuNPs sensor presented high sensitivity for triclosan with a linear range of 2×10−12 to 8×10−10 M and a limit of detection of 6.01×10−13 M. Moreover, the MIP/g‐C3N4‐AuNPs sensor showed excellent selectivity. The sensor had been successfully applied in the analysis of toothpaste samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号