首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用CCD相机和沉积探针组成的在线监测系统,在50 kW下行炉上研究了木屑与神府烟煤以及贵阳贫煤的掺烧灰沉积特性。灰渣沉积过程可分为三个阶段:缓慢增长阶段、快速增长阶段和稳定阶段。烟煤掺烧灰沉积厚度随着木屑掺烧比例的增加而增加,贫煤掺烧灰沉积厚度则随着木屑掺烧比例增加而减小。烟煤中掺烧木屑比例为0、6.7%、15%和22%时,渣层稳定厚度分别为1.37、3.85、11.50、20.56 mm,稳定相对热流密度分别为0.44、0.41、0.30、0.26。贫煤掺烧木屑比例为6.7%、15%和22%时,稳定厚度分别为18.65、10.97和9.78 mm,稳定相对热流密度分别为0.29、0.31、0.33。掺烧木屑之后,灰渣初始层中Ca、K元素显著增加。在相同温度下,随着木屑掺烧比例的增加,灰中熔融相比例增加,因为木屑灰分中含有较多的Na2O、K2O等碱金属氧化物,而Al2O3、SiO2等含量较少,降低了灰的熔融温度。  相似文献   

2.
工业、生活污泥与煤混合燃烧的灰熔特性研究   总被引:1,自引:0,他引:1  
针对煤粉锅炉掺烧污泥后污泥对混合燃料灰熔特性的影响行为,利用矿物三元相图、XRD等分析手段,研究了不同特性污泥(生活污泥、工业污泥)与煤掺混燃烧过程中不同矿物组分的相互作用机制及灰渣的灰熔融特性变化特征。结果表明,三元相图能够有效预测煤和污泥掺混后灰熔融温度的变化趋势;低含量的氧化铁形成低温共熔体以及透辉石、钙长石会降低煤和污泥混合后的灰熔融温度;而钙镁橄榄石、莫来石和单体形式存在的氧化铁能提高煤和污泥混合后的灰熔融温度。工业污泥中的高硫组分在混烧过程中易形成硫酸盐的低温共融体。生活污泥中磷对灰熔点的影响与氧化铝及碱金属的比例有关,当氧化铝的含量占主要成分时,磷的存在趋向于降低灰熔点,而当碱金属占主要成分时,磷的存在趋向于提高灰熔点。  相似文献   

3.
准东煤掺烧高岭土对固钠率及灰熔融特性影响研究   总被引:1,自引:0,他引:1  
选择常见的黏土矿物高岭土作为准东煤添加剂掺烧,研究了不同掺混比例、不同燃烧温度下添加剂的固钠率和煤灰熔融特性的变化,结合XRD谱图和三元相图研究了灰中矿物在高温下的演变过程。结果表明,固钠率随高岭土掺混比例增加逐渐增大,在0~2%时增长较快,2%~5%增长较慢,随燃烧温度升高略微下降;掺混后煤灰熔点随掺混比例先缓慢减小,再快速减小,后快速增加,在3%时达到1 200 ℃左右;XRD和三元相图分析结果表明,煤灰熔融特性变化是由于灰中硅钙石、钙黄长石和钙长石矿物比例的变化引起,发生低温共熔现象是导致掺混比例为3%和4%时煤灰熔点最低的主要原因;当掺混比例为2%时,固钠率在60%以上且灰熔点在1 300 ℃左右,利于固态排渣,当掺混比例为3.0%~4.0%时,灰熔点在1 200 ℃左右,利于液体排渣。  相似文献   

4.
以高灰熔点的晋城无烟煤和水稻秸秆为研究对象,通过CaO-Al_2O_3-SiO_2三元相图、X射线衍射分析(XRD)和扫描电镜耦合X射线能谱分析(SEM-EDX)研究了弱还原气氛下水稻秸秆对晋城无烟煤的助熔机理。随着水稻秸秆添加比例的增加,灰熔融特征温度呈下降趋势,灰中碱性氧化物CaO、Na_2O和K_2O含量增多,结渣指数Rb/a值在0.20-0.69;当水稻秸秆添加量为20%(质量分数)时,流动温度(FT)降低至1 369℃,可满足气化炉液态排渣的要求;水稻秸秆的添加降低了灰中液相出现的温度,增加了液相物质出现的比例和几率,使灰更易发生熔融;混合灰中所形成的钠长石等低熔点矿物质以及钙长石、石英和莫来石所形成的低温共熔物导致灰熔点降低。  相似文献   

5.
灰污热流探针模拟锅炉受热面灰沉积的研究   总被引:1,自引:0,他引:1  
基于傅里叶导热定律,设计了一简单实用的灰污热流探针,以神木煤、黄陵煤、新汶水煤浆和新汶黑液水煤浆为研究对象,在0.25MW热态实验炉上用灰污热流探针模拟了灰沉积过程,研究了四种燃料灰沉积过程中的热流变化特性和灰沉积机理。结果表明,灰污探针能很好地模拟不同燃料的灰污形成过程,模拟结果与实际情况相吻合;灰粒的沉积速率和吸收热流的衰减速率主要取决于燃料本身特性,同时也受烟气温度的影响;通过对探针上灰污的表观物理特性、微观结构、元素构成和矿物相的分析,发现四种燃料的灰沉积机理是不同的,黑液水煤浆灰污中Na、K含量较高,主要物相为熔融温度很低的富Na霞石和无水芒硝,黄陵煤灰污含有较高的Fe、Ca、S,而水煤浆燃烧时Fe的沉积和富集是灰污形成的主要因素;四种实验燃料中,黑液水煤浆和黄陵煤的结渣趋势强于神木煤和水煤浆。  相似文献   

6.
农林废弃生物质与煤共气化通过充分利用两者的相似性和互补性,实现原料转化过程的节能、低碳、清洁高效。原料灰渣的理化特性是影响共气化稳定运行的关键因素之一,成为了共气化研究关注的重点。本综述主要从农林废弃生物质灰与煤灰的共性与差异、混合灰渣熔融与黏温特性、混合灰中碱/碱土金属对共气化反应性和结渣过程烧结行为的影响等方面,梳理了世界各国农林废弃生物质与煤共气化灰渣理化特性的研究现状。总结分析了添加农林废弃生物质对混合灰熔融流动、烧结行为的影响机制,归纳了混合灰熔融特征、黏温及结渣特性的预测模型与方法,并提出了农林废弃生物质与煤共气化灰渣的未来研究重点。  相似文献   

7.
蛭石对高钠高钙准东煤结渣特性影响研究   总被引:1,自引:0,他引:1  
采用一维沉降炉,辅以灰熔点仪的实验方法,将蛭石与高钠高钙准东煤掺混燃烧,研究其对高钠高钙准东煤结渣特性的影响。结果表明,随着蛭石掺烧量的提高,灰熔点温度呈现先降低后升高的趋势,当掺烧量为6%时灰熔点温度最低;蛭石掺烧量越高,高钠高钙准东煤结渣情况改善越明显,当掺烧量达到4%时,渣样变得疏松多孔,质地变脆,渣样与沉积探针之间的黏附性较弱,极易通过吹灰除去,建议蛭石掺烧量为4%;煤灰中原始矿物质以石英、钙铝黄长石或钙黄长石以及辉石类的低熔点矿物质为主,掺烧蛭石后,含钠的绿辉石矿物质被转化为韭闪石,含铁的斜辉石、赤铁矿等矿物质被转化为铁橄榄石,渣样中的矿物质均以高熔点的镁橄榄石为主;蛭石具有固钠的作用,取样温度越低,蛭石掺混量越高,其固钠效果越明显。  相似文献   

8.
采用灰熔点较低的襄阳煤和灰熔点较高的晋城无烟煤组成的混合煤样,利用XRF、SEM、DSC、XRD、三元相图等分析方法,探究了襄阳煤对晋城无烟煤煤灰熔融温度的影响。结果表明,配煤能有效降低高熔点煤灰的熔融温度,当襄阳煤的加入量小于24%时,混合煤灰熔融温度显著降低;襄阳煤的加入量在24%-40%时,混合煤灰熔融温度变化平缓且流动温度低于1 400℃。混合煤灰中的成分在1 000-1 200℃发生一系列的化学反应,主要包括SiO_2与Al_2O_3结合产生高熔点物质莫来石以及Fe_2O_3、CaO与莫来石反应转化形成铁尖晶石、钙长石等新物质,由此造成了煤灰熔融温度的变化。基于BP神经网络对实验数据建立预测模型,其预测效果优于前人总结的经验公式,平均准确度高于99%。利用热力学软件HSC 5.0分析了CaO、Fe_2O_3对降低煤灰熔融温度的影响,分析表明,CaO对莫来石的转化作用优于Fe_2O_3。  相似文献   

9.
采用灰熔点测定仪、X射线荧光仪、X射线衍射仪和Fact Sage软件相结合对生物质(花生壳、稻壳)与高灰熔点长治煤混合灰的熔融特性及其熔融机制进行了研究。结果表明,两种生物质灰都可以降低长治煤的灰熔融温度,花生壳灰助熔效果优于稻壳灰,这主要与它们的化学组成和赋存形态有关。低熔点长石类矿物(钙长石、钠长石)和白榴石的生成是花生壳与长治煤混合灰熔融温度降低的主要原因;长石类矿物的生成及其与SiO_2结合生成的低温共熔物引起稻壳与长治煤混合灰熔融温度降低。热力学计算表明,在碱性氧化物Na_2O、CaO、K_2O存在时,SiO_2和Al_2O_3优先与其反应生成低熔点硅铝酸盐,一定程度上抑制了高熔点莫来石矿物的生成,从而起到助熔作用。混合灰的熔融过程可以分为含钾矿物熔融和含钙矿物熔融两个阶段,两类矿物熔融顺序:含钾矿物先于含钙矿物。  相似文献   

10.
以神华烟煤和玉米秸秆为实验原料,研究弱还原性气氛下生物质掺混量对神华烟煤的灰熔融特性和黏温特性的影响。利用XRD和SEM对灰渣的矿物质组成和微观形貌进行检测和表征。并利用热力学软件FactSage对不同温度下灰渣的物相及矿物质转化过程进行模拟计算。结果表明,随着玉米秸秆掺混量的增加,灰渣中高熔点的石英、钙长石和堇青石的含量降低,低熔点的钾长石含量增加,在玉米秸秆掺混量为20%(质量分数)时,灰渣的临界黏度温度(tcv)和最低操作温度(tlp)降到最低,此时灰渣的黏度最低,温度升高至1255℃时黏度值小于25 Pa·s,满足气化炉的液态排渣要求。结合Urbain均相模型和Einstein-Roscoe非均相模型,以及FactSage软件计算的不同温度下的液相含量得出适合玉米秸秆和神华烟煤混合灰渣的黏度预测经验公式。  相似文献   

11.
为探究气氛、混合比及残炭含量对生物质与煤混合灰熔融特性的影响,将松木屑灰与乌海烟煤灰按不同质量比混合,采用智能灰熔点仪测定各混合灰样在不同气氛下的灰熔融温度,X射线衍射仪从矿物质演变角度分析混合灰熔融温度变化的原因。结果表明,由于铁尖晶石和铁橄榄石的生成,使混合灰的熔融温度在弱还原性气氛下比氧化性气氛下低,且差值的大小与混合灰中Fe含量有关;随松木屑灰含量的增加,钙铝黄长石、镁黄长石、白榴石等低温共熔物的生成量增加,使混合灰的熔融温度降低;此外,由于Fe-C共熔体(Fe_xC_y)的生成、灰锥局部还原性气氛及残炭的"骨架"作用,使混合灰的熔融温度随煤灰中残炭含量的增加呈现先升高后降低再升高的趋势。  相似文献   

12.
黑液水煤浆炉壁灰沉积物熔融温度分布特性   总被引:2,自引:1,他引:1  
为了解沉积于炉壁不同部位灰渣熔融温度的变化及分布特性,在实验炉内进行了两个工况的对比燃烧实验,通过对沿烟气行程灰沉积物熔融温度及化学成分和矿物相的分析,结果发现,距燃烧器出口155mm处炉壁灰渣的熔融温度最低,距燃烧器出口1000 mm~1150 mm炉壁灰渣熔融温度最高;灰沉积物熔融温度沿烟气行程呈先升高后降低的分布特点。这种分布特性与矿物元素的迁移、沉积是直接相关的,同时与燃烧负荷也有一定的关系。  相似文献   

13.
搜集并统计了世界129种典型煤种、城市污水污泥及污泥/煤混烧灰样的灰成分及灰熔融特征温度等相关数据,研究灰中酸性成分SiO2、Al2O3、TiO2和P2O5对灰熔融特性的影响。结果表明,Al2O3是决定灰熔点的主要因素,酸性金属氧化物SiO2、Al2O3和TiO2形成的耐熔矿物质石英、偏高岭石、莫来石、金红石等可提高灰熔点。非金属氧化物P2O5与污泥和污泥/煤的灰熔点FT二次拟合很好且明显降低熔点,污泥灰中P2O5含量显著高于煤灰是导致其熔点明显低于煤的重要原因。  相似文献   

14.
利用沉降炉系统对榆林和平朔的配煤进行结渣特性实验,测定不同实验温度下煤的结渣指数,并利用X射线衍射分析(XRD)对灰渣中矿物质组成进行了定量分析.结果表明,灰渣中主要存在四种结晶矿物质分别为氧化铁、钙长石、莫来石、氧化硅,以及无定形的玻璃体.其中,灰中氧化铁含量和灰渣中钙长石、莫来石含量对燃煤的结渣倾向性起显著性影响;灰中氧化铁和灰渣中钙长石含量越高、灰渣中的莫来石含量越低,煤燃烧的结渣倾向性越大.通过配煤可以降低煤灰中的氧化铁含量,并降低灰渣中的钙长石生成量和提高灰渣中的莫来石生成量,从而显著降低神木类煤的结渣倾向性.  相似文献   

15.
应用TG-FTIR联用研究催化剂对煤热解的影响   总被引:7,自引:3,他引:7  
用TG-FTIR联用技术研究了碱金属、碱土金属和过渡金属对宝日希勒褐煤和包头烟煤热解的催化作用和挥发分析出的影响。结果表明,各种催化剂对褐煤和烟煤热解的催化效果分别为Ni>Fe~Ca>K和Ca~Fe>Ni>K,K2CO3对煤的热解没有明显的催化作用。催化剂使褐煤和烟煤热解转化率增加的最大值分别为10.1%和6.4%。烟煤热解生成的CH4比褐煤的多,不同的催化剂使煤热解挥发产物CO2、H2O、CH4和CO增加的幅度不一样,催化效果与温度和煤的变质程度有关。  相似文献   

16.
电石渣催化煤燃烧特性的影响因素分析   总被引:7,自引:4,他引:7  
用热重法研究了不同条件下电石渣的催化煤燃烧特性,发现电石渣对晋城煤的着火温度和固定碳燃尽率都具有一定的促进作用,而且随添加量的增加助燃作用增强。采用干法混合方式添加0.5%电石渣的助燃作用很小,而采用浆状混合方式则具有较为明显的助燃效果。添加0.5%电石渣能使晋城无烟煤的着火温度由582 ℃降低到576 ℃,使潞安贫煤的固定碳燃尽率由89.41%提高到94.84%,而对长广高灰烟煤的着火和燃尽特性都影响很小。  相似文献   

17.
采用灰熔点仪、X射线荧光仪(XRF)研究了无机非金属P2O5对城市污水污泥与烟煤的混烧灰熔融特性的影响,利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)研究在各混烧温度下灰中含磷矿物在晶体和非晶体间的演变。结果表明,对于Al_2O_3含量较多且熔点较高的灰样,磷含量的增加可显著降低其灰熔点,P2O5含量在0-4%时影响最大,使其灰熔点降低126℃;但对碱性含量高的灰样的影响较小。低温灰中主要以磷酸铝(AlPO_4)晶体为主,温度升高后,与硬石膏(CaSO_4)等含钙矿物和赤铁矿(Fe_2O_3)反应生成晶体Ca_3(PO_4)_2和玻璃相(Fe_2O_3)_(0.252)(P_2O_5)_(0.748),磷含量增加可使灰中玻璃相(Fe_2O_3)_(0.252)(P_2O_5)_(0.748)增加,是磷降低灰熔点的主要原因。  相似文献   

18.
配煤燃烧过程中煤灰熔融性研究   总被引:9,自引:3,他引:6  
采用灰熔点较低的神华煤和较高的准格尔煤以及这两种煤组成的混煤在沉降炉内进行实验,模拟实际电站锅炉内结渣的形成过程。采用SEM、XRD技术对煤粉和灰渣的微观形貌和晶相成分进行分析。结果表明,准格尔煤粉中包含的大量高岭石和勃姆石为莫来石的大量生成提供了条件,神华煤中不含勃姆石,高岭石的含量也不多,莫来石的生成量很少。莫来石在高温下遇到石灰石的分解产物CaO,要与之反应生成钙长石,这是神华煤灰渣中没有检测到莫来石衍射峰的主要原因。莫来石是一种高熔点矿物(1850℃),能显著改善煤灰的熔融温度,神华煤灰渣中不含莫来石,灰渣中缺少大量能在其熔融过程中发挥“骨架”作用的成分,这是导致神华煤灰熔融温度较低的一个重要原因。  相似文献   

19.
利用沉降炉系统对榆林和平朔的配煤进行结渣特性实验,测定不同实验温度下煤的结渣指数,并利用X射线衍射分析(XRD)对灰渣中矿物质组成进行了定量分析。结果表明,灰渣中主要存在四种结晶矿物质分别为氧化铁、钙长石、莫来石、氧化硅,以及无定形的玻璃体。其中,灰中氧化铁含量和灰渣中钙长石、莫来石含量对燃煤的结渣倾向性起显著性影响;灰中氧化铁和灰渣中钙长石含量越高、灰渣中的莫来石含量越低,煤燃烧的结渣倾向性越大。通过配煤可以降低煤灰中的氧化铁含量,并降低灰渣中的钙长石生成量和提高灰渣中的莫来石生成量,从而显著降低神木类煤的结渣倾向性。  相似文献   

20.
本研究选择一种典型糠醛渣和两种硅铝比(Si/Al)不同的气化煤,考察配入糠醛渣对两种气化煤灰熔融温度的影响,利用X射线衍射仪(XRD)分析了不同温度下灰渣的矿物质变化规律,采用热力学计算软件FactSage计算了平衡状态下的物相变化。研究结果表明,随着糠醛渣配比的增加,两种气化煤灰的熔融温度均呈现先增加后降低的趋势,其中,高硅铝比的气化煤灰增加趋势更显著。配入糠醛渣后气化灰渣难熔相由钙长石(CaAl2Si2O8)变为白榴石(KAlSi2O6),白榴石(KAlSi2O6)在1300℃仍以固相形式存在,导致灰熔融温度升高。硅铝比高的气化煤灰的SiO2相对含量高,其与糠醛渣中的K2O反应生成更多高熔点的白榴石(KAlSi2O6),导致其熔融温度升高趋势更显著。随着糠醛渣配比的继续增加,共气化灰渣中K2O含量增加,灰渣中形成低熔点的钾...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号