首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A clear light-yellow silver sol which has the visible spectral absorption at 390 nm, when adsorbed phenylmercaptotetrazole(PMT) or mercaptobenzothiazole(MBT), has a new absorption at 510-550 nm. It was found that the adsorption of halide ions competes with PMT and MBT. However, halide ions have a completely different influence from PMT and MBT on the spectral absorption of the silver sol. The differences may result from the change of the properties of the surface of the silver subcolloidal particles and from the bond forms combining adsorbates with the substrates.  相似文献   

2.
Adsorption of Carbon Dioxide on Activated Carbon   总被引:5,自引:0,他引:5       下载免费PDF全文
The adsorption of CO2 on a raw activated carbon A and three modified activated carbon samples B, C, and D at temperatures ranging from 303 to 333 K and the thermodynamics of adsorption have been investigated using a vacuum adsorption apparatus in order to obtain more information about the effect of CO2 on removal of organic sulfur-containing compounds in industrial gases. The active ingredients impregnated in the carbon samples show significant influence on the adsorption for CO2 and its volumes adsorbed on modified carbon samples B, C, and D are all larger than that on the raw carbon sample A. On the other hand, the physical parameters such as surface area, pore volume, and micropore volume of carbon samples show no influence on the adsorbed amount of CO2. The Dubinin-Radushkevich (D-R) equation was the best model for fitting the adsorption data on carbon samples A and B, while the Preundlich equation was the best fit for the adsorption on carbon samples C and D. The isosteric heats of adsorption on carbon samples A, B, C, and D derived from the adsorption isotherms using the Clapeyron equation decreased slightly increasing surface loading. The heat of adsorption lay between 10.5 and 28.4 kJ/mol, with the carbon sample D having the highest value at all surface coverages that were studied. The observed entropy change associated with the adsorption for the carbon samples A, B, and C (above the surface coverage of 7 ml/g) was lower than the theoretical value for mobile adsorption. However, it was higher than the theoretical value for mobile adsorption but lower than the theoretical value for localized adsorption for carbon sample D.  相似文献   

3.
Carbon materials were used as supports for Ag catalysts that are prepared using the conventional wet impregnation method, and their catalytic properties for CO selective oxidation in excess hydrogen at temperatures below 483 K were tested. A variety of techniques, e.g. N2 adsorption, XPS, TPD, UV-Vis DRS, TEM and SEM, were used to determine the influence of physical and chemical properties of the carbon on the properties of Ag catalyst. It was found that defects on the carbon surface served as nucleation sites for silver ions, while functional groups on carbon surface induced their reduction to the metallic form. The formation of silver particles on carbon was governed by homogeneous and/or heterogeneous nucleation during the impregnation and subsequent activation processes. The best catalytic performance was obtained with a Ag/carbon black catalyst with a uniform size distribution of silver nanoparticles (about 12 nm), moderate BET surface area (with a mesoporous structure), and a limited amount of carbon-oxygen groups. The research indicates that carbon materials are potentially good supports for silver catalysts for preferential oxidation of CO in excess hydrogen.  相似文献   

4.
吴奇 《高分子科学》1999,(6):595-601
The adsorption of linear poly(N-isopropylacrylamide) (PNIPAM) chains on surfactant-freepolystyrene (PS) nanoparticles was used as a model system to study the hydrophobic adsorption of polymeron the surface, because the hydrophobility of PNIPAM can be continuously varied by a small temperaturechange. The adsorption was investigated by a combination of static and dynamic laser light scattering (LLS)measurements, In static LLS, the absolute excess scattered light intensity led to the amount of PNIPAMadsorbed on the surface. In dynamic LLS, the hydrodynamic thickness of the adsorbed PNIPAM layer wasaccurately measured. For a given particle concentration, the adsorption increases as thc PNIPAMconcentration and the incubation temperature increase. The average density of the adsorbed PNIPAM layer isreciprocally proportional to the number of the PNIPAM chains on the surface, revealing a simple scaling ofthe chain density distribution. The adsorption follows the Langmuir's isotherm. The enthalpy changeestimated from the adsorption at 25℃and 30℃is slightly positive, indicating that the adsorption involvesthe coil-to-globule transition of the chains on the surface.  相似文献   

5.
Adsorption and desorption of methane by activated carbon (AC) at constant temperature and at various pressures were investigated. The effect of moisture was also studied. A volumetric method was used, up to 40 bar, at a temperature of 273.5 K. Results of a dry AC sample were compared with those obtained from a moist sample and two different ACs with different physical and surface properties were used. As expected, the results showed that the existence of moisture, trapped in the AC pores, could lead to a decrease in the amount of methane adsorbed and a decrease in the amount of methane delivered during desorption. To model the experimental results, a large variety of adsorption isotherms were used. The regressed parameters for the adsorption isotherms were obtained using the experimental data generated in the present study. The accuracy of the results obtained from the different adsorption isotherms was favorably compared.  相似文献   

6.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalyst were extensively investigated by TPSR and TPD experiments. It showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalyst, while CO2 adsorbed on the catalyst weakly and only existed in one kind of adsorption state. Then the mechanism of interaction between the species dissociated from CH4 and CO2 during reforming was proposed.  相似文献   

7.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters C-γ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4  相似文献   

8.
The interaction between radionuclides and solid/water interfaces is important to understand the physicochemical processes of radionuclides in the natural environment.Herein,the interaction of 60Co(Ⅱ) with TiO 2 in aqueous solution as a function of pH and ionic strength was studied by using batch technique combined with surface complexation model and density functional theory(DFT) calculations.The batch experimental results showed that the adsorption of 60Co(Ⅱ) was dependent on pH and independent of ionic strength,indicating the formation of inner-sphere surface complexes on TiO 2 surfaces.The results of surface complexation models and DFT calculations indicated that the surface species of 60Co(Ⅱ) adsorbed on TiO 2 followed the trend:B structure(i.e.,60Co(Ⅱ) was linked to one bridge oxygen site) was the dominant surface species at low pH,and TT structure(i.e.,60Co(Ⅱ) was linked to two terminal oxygen sites) became the important surface complex at neutral and alkaline pH values.These results demonstrated that a multi-technique approach could lead to definitive information on the structures of adsorbed 60Co(Ⅱ) at the molecular level at the TiO 2 /water interfaces,as well as realistic models to rationalize and accurately evaluate the macroscopic manifestations of radionuclide adsorption phenomena.  相似文献   

9.
The adsorption behaviors of 2-naphthalenesulfonic acid and aniline on a conventional macroporous resin Amberlite XAD4 and the other two newly-developed hypercrosslinked resins NDA101 and NDA100 were investigated in a single or binary batch system at 293 K and 313 K,respectively.All the adsorption isotherms of 2-naphthalenesulfonic acid and aniline on the test resins in both systems can fit well with the Langmuir equation,indicating that the adsorption is a favorable process.At the identical equilibrium concentration,the amount of aniline adsorbed on polymeric resins in the single system is higher than that in the binary system because of the competitive adsorption between 2-naphthalenesulfonic acid and aniline on the resin surface.However,the uptake amount of 2-naphthalenesulfonic acid in the binary system is markedly larger than that in the single system,which is presumably due to the cooperative effect arisen from the electrostatic interaction between 2-naphthalenesulfonic acid and aniline adsorbed on the resin surface.The simultaneous adsorption system was proven to be helpful for the selective adsorption toward 2-naphthalenesulfonic acid due to its larger selective index.  相似文献   

10.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters Cγ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4 and CO2 during reforming was then hypothesized.  相似文献   

11.
Polarographic current-potential characteristics and current-time curves for the reduction of methylene blue (MB) to methylene blue leucoform (MBL) in a pH 7.9 aqueous phosphate buffer have been examined in detail over a wide concentration range. It has thus been shown that the so called “normal” or “main” reduction wave of MB actually consists of two separate steps, the former with a half-wave potential practically coinciding with the formal potential E0=?0.250 V/SCE of the MB/MBL couple and the latter with a half-wave potential of about ?0.310 V/SCE. As soon as the well-known MB adsorption prewave has attained its maximum height (which occurs at a MB bulk concentration c0*?5×10?5M), a further slight increase in c0* causes the appearance of the wave with E1/2=?0.310 V. The height of the linear potential-sweep voltammetric peak corresponding to the latter wave increases proportionally to the sweep rate, thus revealing the “adsorption” nature of this wave. A comparison with a previous chronocoulometric investigation of the MB/MBL system has permitted us to conclude that the wave with E1/2=?0.310 V is due to reduction of the MB molecules which, after having reached the surface of the dropping electrode by diffusion, are adsorbed at the top of the adsorbed monolayer of MBL in direct contact with the electrode and remain in this adsorbed state after reduction. For c0*>7×10?5M the wave with E1/2?E0=?0.250 V starts to develop. This wave is due to the electroformation of MBL molecules which diffuse back into the solution. The shape of polarographic current-potential characteristics and current-time curves has been accounted for semiquantitatively through an approximate solution of the corresponding diffusional problem.  相似文献   

12.
The specific adsorption of chloride, bromide, iodide, azide, and thiocyanate has been studied at an electropolished polycrystalline silver-aqueous interface using differential capacitance measurements. For chloride, bromide, and azide, quantitative estimates of the surface concentration of specifically adsorbed anions were obtained from capacitance-potential data in mixed fluoride electrolytes having a constant ionic strength of 0.5. The dependence of the measured capacitance upon the ionic strength of sodium fluoride was also investigated in order to check the behavior of the polycrystalline surface in comparison with the predictions of conventional double-layer models. Estimates of the specifically adsorbed charge densities of chloride, bromide, and thiocyanate anions were also obtained from a “kinetic probe” technique which entailed monitoring the response of the outer-sphere reduction rate of CO(NH3)5F2+ and Co(NH3)63+ to the addition of the appropriate adsorbing anion. At the average potential of zero charge for the polycrystalline silver surface, the standard free energies of adsorption ? Δ3o for chloride, bromide, and azide were found to be within ca. 5 kJ mol?1 of the corresponding quantities obtained at mercury electrodes. However. significantly greater increases in ? Δ3o in the sequence Cl? < N3? < Br? are seen at silver compared to mercury. Electrochemical roughening in chloride media, giving silver surfaces displaying intense surface Raman scattering, yields only minor changes in the surface concentration of specifically adsorbed chloride anions.  相似文献   

13.
Electrodeposition of metal ions on the crystal is eliminated by using a specially constructed transistorized oscillator. When tartrate, citrate, EDTA or their mixtures are present, silver adsorption occurs. The frequency change is proportional to the silver concentration in the range 2 × 10?7?1 × 10?5 M after adsorption for 10 min from a 1 mM EDTA/3 mM tartrate solution. No significant interferences are caused by other metal ions. On the basis of cyclic voltammetric studies, it is suggested that silver is adsorbed as a silver (I) complex.  相似文献   

14.
Kinetics of silver electrodeposition in the presence of sulfide ions is studied on electrodes renewed by cutting off a thin surface layer, at a controlled time of contact of the “fresh” surface with the electrolyte. Solutions containing 10?2 M AgNO3, 0.1 M thiocarbamide, 0.5 M HClO4, and from 2 × 10?6 to 1.5 × 10?5 M Na2S are studied. It is shown that under the studied conditions, the effect of silver electrodeposition on the surface concentration of sulfide ions is insignificant. As the concentration of sulfide ions in solution and their coverage on the electrode surface θ increase, the cathodic polarization decreases. Tafel curves plotted for θ = const are used in estimating the exchange current i 0 and the transfer coefficient α. It is shown that α ≈ 0.5 and weakly depends on θ, whereas the exchange current increases with the increase in θ by an approximately linear law from 10?5 A/cm2 at θ ? 0 to 10?4 A/cm2 at θ = 0.43. The obtained data are compared with the results of kinetic studies of silver anodic dissolution in similar solutions.  相似文献   

15.
Local structures on electrode interfaces can be explored by quantum chemical investigation of medium-sized systems consisting of a cluster of substrate (metal) atoms, one or several solvent molecules, and/or at least one ion to be adsorbed at the interface. For the study of water adsorption and halide ion adsorption (unhydrated as well as hydrated) on a mercury surface, we have used the standard CNDO method together with geometrical optimization of the atom positions.In this paper, the following topics have been treated: (a) adsorption of a single water molecule in different positions on a close-packed plane cluster of seven mercury atoms; (b) adsorption of unhydrated halide ions (Cl?, Br?, I?) in the “on-top” or hollow position on the mercury surface; (c) adsorption of monohydrated halides on the mercury surface. Further studies including solvation by six water molecules are discussed.The calculations provide information about minimum-energy geometries, energetic data, and local charges. Furthermore, they allow some conclusions about water mobility and reorientation on a close-packed metal surface, water orientation under the combined influence of an adsorbed ion and the metal surface, and trends of charge distribution in the halide series to be drawn. Calculations are critically discussed in the light of experimental and other quantum chemical data.  相似文献   

16.
A solid‐phase extraction method for preconcentration of silver and consequent determination by atomic absorption spectrometry is described. The method is based on the adsorption of silver on naphthalene modified with dithizone in a column. The adsorbed silver is eluted from the column with a thiourea solution and determined by flame atomic absorption spectrometry. The adsorption conditions including pH, reagent concentration, eluent volume, flow rate and interfering ions were investigated. The calibration graph was linear in the range 10–1000 ng mL?1 of Ag in the initial solution with r = 0.9998. The limit of detection based on 3Sb was 3.9 ng mL?1. The relative standard deviation for ten replicate measurements of 40 and 600 ng mL?1 of Ag was 4.4% and 0.9%, respectively. The method was applied to the determination of silver in mineral, radiology film and wound dressing samples.  相似文献   

17.
The adsorption/desorption and reactive behavior of formaldehyde was studied on clean single-crystal Ni(110) at adsorption temperatures down to 200 °K. For low exposures of the surface to formaldehyde, hydrogen and CO binding states were populated due to decomposition of the molecule upon adsorption. Higher exposures gave rise to a decomposition-limited hydrogen peak exhibiting an activation energy of 20 kcal/gmol and an apparent frequency factor of 1014 sec?1. At initial coverages of H2CO exceeding about 0.5, monolayer methanol was observed to form. The formation of methanol involved a hydrogen atom transfer between two adsorbed H2CO molecules and did not occur totally via surface hydrogen. Self-oxidation to form CO2 was also observed. The surface exhibited reaction heterogeneity, and the surface reactivity was observed to depend on the temperature of adsorption of reactants, suggesting strong adsorbate-induced surface “reconstruction.”  相似文献   

18.
The effect of the specific adsorption of the ClO4? ion upon the kinetics of Cu2+ reduction and Cu0(Hg) oxidation in aqueous solutions of HClO4 was investigated using chronocoulometry, d.c., normal pulse, and a.c. polarography. For this purpose three different sets of data for ClO4? adsorption were used. In the first set the absolute surface excess of water as reckoned at the outer Helmholtz plane (o.H.p.) was disregarded, in the second set it was accounted for by postulating a complete adsorbed monolayer of water molecules [32], whereas in the third set partial displacement of water molecules from this monolayer by adsorbed ClO4? ions was accounted for. Kinetic data were found to the compatible with the latter set, indicating that ClO4? adsorption affects the rate-determining step Cu2++e→Cu+ only by altering the average electric potential σd-effect). The absence of any additional electrostatic effect points out that, in the transition state for Cu2+ reduction to Cu+, the centre of charge of the reacting particle falls in the proximity of the o.H.p.  相似文献   

19.
The adsorption of carbon monoxide at the surface of smooth polycrystalline platinum (smPt) is studied in conditions of a preliminary accumulation of various quantities of silver (θAg) on the surface. A comparison with similar data obtained previously for Pt/Pt is conducted. It is discovered that on smPt, exactly as in the case of Pt/Pt, carbon monoxide undergoes adsorption at sites that are not occupied by adsorbed silver, without forcing the preliminarily adsorbed silver out. At small and intermediate Agad, as opposed to Pt/Pt, a mere two peaks are observed in a voltametric curve in the region of electrodesorption of the mixed layer on smPt. It is shown that, in the region of potentials of the first peak, there occurs practically no transition of silver into solution in the course of oxidation of the mixed layer. Specific features that characterize the behavior of the COads + Agad mixed layer are discussed under the assumption about an “islet” character of the adsorption of silver.  相似文献   

20.
The interactions of S2? and HS? ions with gold, silver, and copper were studied by density functional theory using the cluster model of the metal surface. The geometrical and energy characteristics of the interactions of these ions with the surface metal atoms were evaluated. The S2? ions form stronger chemical bonds with the surface metal atoms than HS? ions. A significant charge transfer from anion to metal occurs during the adsorption. The adsorbability increased in the series Ag < Cu < Au for both anions. The HS? ion showed greater ability to be transferred to the surface during the electrochemical adsorption due to the strong hydration of the S2? ion. In alkaline media, however, the dissociation of the adsorbed HS? leads to its conversion to S2?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号