首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nd:YAG laser (355 nm) induced surface modifications in polylactic acid (PLA), and its composites with silver nanoparticles (AgNPs, size range between 120 and 150 nm) with and without additional melamine–formaldehyde-coated short sisal fibers were studied as a function of laser pulse numbers. The AgNP content was varied (100, 300 and 500 ppm), whereas the sisal content kept as constant (9 mass%). The PLA-based systems with a fully amorphous matrix were irradiated with 1–256 laser pulses at a constant fluence of 0.32 µJ µm?2. Changes in the irradiated surfaces were assessed and quantified by light and scanning electron microscopic pictures. Protrusion with bubbling, bubbled protrusion with cratering and crater formation with more or less bubbled ridges were found as characteristic ablation features. Bubbling was traced to entrapped gaseous products of PLA degradation, while the onset of ridges was ascribed to the melt flow of the PLA matrix caused by laser shock waves. The laser irradiation caused damage and ablation highly depended on the actual composition, which influenced the UV absorption at 355 nm, which was measured as well.  相似文献   

2.
This study was designed to examine the mechanism of vasorelaxation induced by pulsed-UV laser. Luminal diameters of rat femoral arteries were measured prior to and following krypton-fluoride excimer laser irradiation of 248 nm in wavelength. The diameter was enlarged to 1.3 times the preirradiated size at 1 or 10 Hz irradiation when the fluence was over 2.0 mj/pulse/mm2, while the diameter reached 1.8 times at 100 Hz with a fluence of 0.8 mj/pulse/mm2. Vasorelaxation by the 100 Hz irradiation was inhibited when the artery was pretreated with methylene blue but was enhanced with superoxide dis-mutase. Pathological analysis revealed an ablation crater and vacuole formation in the vessel at 1 or 10 Hz irradiation, but these changes were not remarkable in the 100 Hz-exposed sample. These findings suggest that vasorelaxation induced by the pulsed UV irradiation at 1 or 10 Hz results from structural alteration of vascular smooth muscle by the ablation crater or vacuolization. On the other hand, a possible mechanism of vasorelaxation at the 100 Hz irradiation is partially related to nitric oxide.  相似文献   

3.
Organic–inorganic hybrid nanocomposites composed of conductive polypyrrole (PPy) and surface modified silica (SiO2) were successfully prepared through an in situ chemical oxidative polymerization in supercritical carbon dioxide (scCO2). SiO2 nanoparticles were surface modified using 3‐methacryloxypropyltrimethoxysilane (MPTMS) in order to disperse well in the medium. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the SiO2 nanoparticles were encapsulated into the polymer. UV‐visible spectra of the diluted colloidal dispersions of PPy/SiO2 hybrid nanocomposites were similar to those of PPy system. Fourier transform infrared spectroscopy (FT‐IR) suggested the strong interaction between PPy and SiO2. Surface characterizations of nanocomposites were described by X‐ray photoelectron spectroscopy (XPS). The nanocomposites synthesized in scCO2 have been shown to possess higher electrical conductivity and thermal stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Some NiO-doped Bi2O3,La2O3-SrO-BaO-Nb2O5-B2O3 glasses giving the formation of strontium barium niobate Sr0.5Ba0.5Nb2O6 (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 °C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 μm/s in 2NiO-4La2O3-16SrO-16BaO-32Nb2O5-30B2O3 glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni2+ ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.  相似文献   

5.
Results of a pioneering study of the effect of laser radiation in vacuum on the surface of a polyketone (alternating terpolymer of ethylene, propylene, and carbon monoxide, POK) plate are presented. It has been found that laser beam irradiation leads to the surface heating of the plate, its melting, and the formation of a characteristic surface microrelief, an ablation crater, from which the gas flow of the ablation plume carries away products that are deposited on surfaces outside the laser beam area to form a coating with a chemical composition close to that of the substrate POK. A rim grows from molten POK around the crater. The melting point of the crystalline modification (377 K), the molecular flow temperature (427 K), and the molecular weight of the coating (25560) are much lower than those of the initial POK (464 K, 477 K, and 159200, respectively), thereby indicating laser-induced chain degradation of POK. The preliminary γ-irradiation of POK to a dose of 100 kGy enhances its laser ablation rate.  相似文献   

6.
Effect of ablation environment on the nature of ZnO nanoparticles produced by laser ablation method in liquid medium is investigated experimentally. High purity Zn plate was irradiated by the fundamental beam of a Q-switch Nd-YAG laser in cetyltrimethylammonium bromide (CTAB), acetone, sodium dodecyl sulfate and water. Produced nanoparticles were characterized by UV–Vis absorption spectroscopy, transmission electron microscopy, scanning electron microscopy, X-ray diffraction spectrum, and fourier transform infrared spectroscopy. Results show that the highest rate of ablation occurs in CTAB. Largest nanoparticles are produced in acetone, and crystallinity of nanoparticles produced in CTAB is higher than other samples. CTAB surfactant changed the morphology of ZnO nanoparticles.  相似文献   

7.
We present a detailed study of the morphology of 355 nm (6 ns) laser‐induced damage in fused silica polished by CeO2 solution. We see two distinct damage morphologies: the gray haze and the crater. The gray haze, consisting of a high density of pin‐points, appears at the fluence higher than ~10 J/cm2, and the crater forms at ~≥ 22 J/cm2. The size and depth of the pin‐points are much smaller than the crater. The difference in the two morphologies is attributed to the property of the absorber and its surrounding material in the redeposition layer, which is different from those in the subsurface damage layer. The damage growth characteristics of the two morphologies are measured, and the size of crater increases under successive shots, but the size of the gray haze remains constant. The growth of the crater is attributed to the existence of crack around the absorber, which is observed by SEM imaging. On the basis of the above analysis, the schematic diagram of subsurface feature is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
We present the results of studying the structure of gold nanoparticles synthesized on the silicon surface by two techniques: pulsed laser ablation and magnetron sputtering. The surface morphology is examined by scanning electron microscopy. The structure of the obtained gold nanoparticles is analyzed by transmission electron microscopy and electron diffraction. It is shown that nanoparticle sizes and crystal structures can be controlled by their thermal annealing. Mechanisms occurring during annealing of thin gold films and also their effect on the formation of nanoparticles with different structures are investigated.  相似文献   

9.
Gadolinium?Cboron codoped and mono-doped TiO2 nanoparticles were prepared using a sol?Cgel method, and tested for photocatalytic activity by the UV light after a further calcination process. For comparison, a pure TiO2 sample was also prepared and tested under the same conditions. The prepared catalysts were characterized by X-ray diffraction, scanning electron microscope, and UV?CVis spectra. The photocatalytic activity of the samples was evaluated through the photo-degradation of three different dyes under UV light. The experiments demonstrated that the gadolinium?Cboron codoped TiO2 (Gd?CB?CTiO2) sample calcined at 500?°C possessed the best photocatalytic activity, and the photodegradation rate of the Reactive Brilliant Red K2G aqueous solution could reach to 95.7% under UV irradiation for 80?min. The results showed that Gd?CB?CTiO2 has smaller crystallite size and higher photocatalytic activity than that of mono-doped TiO2 samples and undoped TiO2.  相似文献   

10.
Cross-linked poly(methyl methacrylate) particles were prepared via dispersion polymerization in supercritical carbon dioxide (scCO2) using poly(heptadecafluorodecyl methacrylate) (PHDFDMA) and 2,2′-azobisisobutyronitrile as the dispersant and the initiator, respectively. The following chemicals were used as cross-linking agents: ethylene glycol dimethacrylate (EGDMA), 1,4-buthanediol di(meth)acrylate (1,4-BD(M)A), and trimethylolpropane trimethacrylate. PHDFDMA was synthesized by solution polymerization in scCO2. We investigated the effect of the chemical structure, concentration of the cross-linking agents, reaction pressure, and CO2 density on the morphology, the polydispersity, and the cross-linking density of polymer particles. The resulting polymer particle was characterized by field emission SEM, differential scanning calorimetry, and thermal gravimetric analysis. The cross-linked PMMA particles is more agglomerate as the cross-linking agent concentration increased and as pressure decreased at constant temperature. Glass-transition temperature (T g) of the resulting polymer increased as the cross-linking agent increased with temperature and pressure increasing at the same CO2 density. Decomposition temperature is slightly increased as 1,4-BDA concentration increased. From these results, we can confirm that the thermal stability of the polymer increased as the cross-linking agent and EGDMA is the best cross-linking agent in term of the thermal stability.  相似文献   

11.
Amyloid peptide (Aβ) is found in the brain and blood of both healthy and diseased individuals alike. However, upon secondary structure transformation to a β-sheet dominated conformation, the protein aggregates. These aggregates accumulate to form neuritic plaques that are implicated in the pathogenesis of Alzheimer's disease. Gold nanoparticles are excellent photon-thermal energy converters. The extinction coefficient of the surface plasmon band of gold nanoparticles is very large when compared to typical organic dyes. In this study, gold nanoparticle–Aβ conjugates were prepared and the photothermal ablation of amyloid peptide aggregates by laser irradiation was studied. Monofunctional gold nanoparticles were prepared using a recently reported solid phase modification method and then coupled to fragments of Aβ peptide, namely Aβ(31–35) and Aβ(25–35). The conjugates were then mixed with Aβ fragments in solution. The aggregated peptide formation was studied by a series of spectroscopic and microscopic techniques. The peptide aggregates were then irradiated by a continuous laser. With gold nanoparticle–Aβ conjugates present the aggregates were destroyed by photothermal ablation. Gold nanoparticles without Aβ conjugation were not incorporated into the aggregates and when irradiated did not result in photothermal ablation. With gold nanoparticle–Aβ conjugates the ablation was selective to the site of irradiation and minimal damage was observed as a result of thermal diffusion. In addition to the application of photoablation to a protein-based sample the nanoparticles and the chemistry involved provide an easily monofunctionalized photothermal material for the biological conjugation.  相似文献   

12.
TiO2 -Au aerogels containing different amounts of gold nanoparticles of different sizes (5 and 16 nm) were successfully synthesized using a sol-gel procedure, and were tested for salicylic acid photodegradation under UV irradiation. The structure and morphology of the obtained materials were investigated using X-ray diffraction, transmission electron microscopy, and N2 adsorption-desorption measurements. UV-Vis spectroscopy was used to study the optical properties. The effects of the gold nanoparticles on the TiO2 crystallization process were twofold, as follows: (i) the number of crystallized zones was strongly related to the concentration of the gold nanoparticles, and (ii) the smaller gold particles increased the time taken for the crystallization of the samples. It was found that the noble metal-doped samples exhibited higher degradation rates compared with bare titania. It was found that the most active photocatalyst in each studied system was the sample with the highest concentration of gold nanoparticles. Additionally, the highest degradation rate value was obtained with the smallest Au nanoparticles (46.4 10-3 μmol/(L·s).  相似文献   

13.
Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.  相似文献   

14.
Free and functionalized gold nanoparticles are synthesized by laser ablation of a gold metal plate immersed in dimethyl sulfoxide, acetonitrile, and tetrahydrofuran. Functionalized gold nanoparticles are synthesized in a one-step process thanks to the solubility of the ligands in these solvents. It is possible to have significant control of the concentration, aggregation, and size of the particles by varying a few parameters. UV-vis spectroscopy and transmission electron microscopy are used for the characterization of the nanoparticles. The Mie model for spherical particles and the Gans model for spheroids allow a fast and reliable interpretation of experimental UV-vis spectra.  相似文献   

15.
The in situ formation of gold nanoparticles into the natural polymer chitosan is described upon pulsed laser irradiation. In particular, hydrogel-type films of chitosan get loaded with the gold precursor, chloroauric acid salt (HAuCl(4)), by immersion in its aqueous solution. After the irradiation of this system with increasing number of ultraviolet laser pulses, we observe the formation of gold nanoparticles with increasing density and decreasing size. Analytical studies using absorption measurements, atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy of the nanocomposite samples throughout the irradiation procedure reveal that under the specific irradiation conditions there are two competing mechanisms responsible for the nanoparticles production: the photoreduction of the precursor responsible for the rising growth of gold particles with increasing size and the subsequent photofragmentation of these particles into smaller ones. The described method allows the localized formation of gold nanoparticles into specific areas of the polymeric films, expanding its potential applications due to its patterning capability. The size and density control of the gold nanoparticles, obtained by the accurate increase of the laser irradiation time, is accompanied by the simultaneously controlled increase of the wettability of the obtained gold nanocomposite surfaces. The capability of tailoring the hydrophilicity of nanocomposite materials based on natural polymer and biocompatible gold nanoparticles provides new potentialities in microfluidics or lab on chip devices for blood analysis or drugs transport, as well as in scaffold development for preferential cells growth.  相似文献   

16.
The growth of Cu2O nanoparticles on silk fibers was achieved under ultrasound irradiation. The effect of temperature, reaction time, ultrasound irradiation and solvent in growth of the Cu2O nanoparticles upon fiber has been studied. These systems depicted a decrease in the size accompanying a decrease in the reaction time. Particle sizes and morphology of nanoparticle depend on power of ultrasound irradiation. Results show that in presence of ultrasound radiation, particle sizes are in a very low range. The susceptibility of the microorganisms to Cu2O upon fiber was determined by minimum inhibitory concentration (MIC) using micro dilution method and disk diffusion method. Results suggest that the Cu2O nanoparticles on silk fibers have antibacterial activity. The Cu2O nanoparticles upon fibers were characterized with X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). XRPD analyses indicated that the prepared Cu2O nanoparticles on silk fibers were crystalline.  相似文献   

17.
Here we demonstrate that the emission spectra of the ablation-plasma produced by nanosecond laser pulses on metallic Al targets may be directly connected to the ablation rates and the dimensions of the ablated craters. We show that the variation of the individual spectral-lines intensities with pulse number gives direct, real-time information on the crater depth, whereas the relative intensities of the lines and their widths enable us to study the variation of the electron temperature and density with pulse number and laser fluence in direct connection to the ablation rates. To interpret these results we use a simple model in which the plasma-plume is treated as an ideal gas expanding away from the target with a velocity given by the electron-temperature, and exerting a recoil pressure determined by the electron temperature and density. The model correlates the plume hydrodynamic-length to the crater dimensions and succeeds in predicting the rims heights.  相似文献   

18.
Foamed polylactide (PLA), PLA–PBAT (poly (butylene adipate‐co‐terphathalate)) blend and their composites with CaCO3 were prepared in a batch process using supercritical carbon dioxide (CO2) at 12 MPa and 45°C. The solubility of CO2 and its diffusion patterns in different PLA samples was investigated. PLA systems had a relatively high CO2 solubility related to the carboxyl groups. CO2 desorption behaviors in PLA systems first followed the Fickian diffusion mechanism in short time and then decreased slowly to a plateau. The addition of both PBAT and CaCO3 into PLA impeded the desorption of CO2. In the presence of second phase PBAT, nanoparticles CaCO3 and dissolved CO2, the PLA crystallization behavior investigated by DSC technique was greatly changed. As the desorption time increased, the gas induced crystallinity slightly decreased in consequence of less CO2 content in each system and thus less plasticization effect. The cell morphology of foamed PLA and PLA composites showed interesting microstructure patterns. The prepared pure PLA foam exhibits a typical bimodal structure because of the foaming in both the amorphous and crystalline zones. With PBAT and CaCO3 into PLA, the composite foam presented significant increase in cell uniformity and cell density. With less CO2 content in each PLA sample, the cell structure showed interesting variation. Pure PLA foam presented transition from bimodal structure to more uniform cell structure with decreased cell density. In contract, PLA–PBAT foam show unfoamed regions because of none CO2 left in the separated PBAT phase. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The electrocatalytic oxidation of d-glucosamine (2-amino-2-deoxy-d-glucose) in alkaline and neutral solutions was examined using a carbon felt electrode modified with 2 nm core sized gold nanoparticles (Au2 nm nanoparticles) and a gold plate electrode. The electrocatalytic voltammetric oxidation curves of d-glucosamine were obtained in both solutions. The voltammetric responses for the electrocatalytic oxidation at a Au2 nm nanoparticle-modified electrode in both alkaline and neutral solutions were almost the same to those at a gold plate electrode. The oxidized product was identified to be d-glucosaminic acid (2-amino-2-deoxy- d-gluconic acid) generated by the 2-electron oxidation product of d-glucosamine by electrospray ionization time-of-flight mass spectra (ESI TOF-MS). The HPLC results also indicated that the oxidation product was d-glucosaminic acid.The controlled-potential electrolysis of d-glucosamine was performed at the Au2 nm nanoparticle-modified carbon felt electrodes in both alkaline and neutral solutions. In the alkaline solution, at a potential of −0.2 V, d-glucosaminic acid was formed with a current efficiency of 100%. In the neutral solution, electrolysis at 0.4 V on d-glucosaminic acid was obtained with current efficiencies of 70%.  相似文献   

20.
Uniform CeO2 nanoparticles were synthesized via a facile sonochemical reaction between ceric ammonium nitrate and ammonia. Nanoparticles were synthesized via a surfactant free reaction at room temperature in solvent of water. Products were characterized using X-ray diffraction, scanning electron microscopy, photoluminescence (PL) spectroscopy, and energy dispersive X-ray analysis. The effect of different parameters such as precursor, power of pulsation, surfactant and reaction time on the morphology of the products was investigated. It was found that the as-obtained CeO2 nanoparticles exhibit a strong PL peak at 381 nm at room temperature that can be ascribed to the high level transition in the CeO2 semiconductor. The photocatalytic behavior of CeO2 nanoparticles was evaluated using the degradation of a methyl orange aqueous solution under ultraviolet light irradiation. The results show that CeO2 nanoparticles are promising materials with excellent performance in photocatalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号