首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用密度泛函理论(DFT)平面波赝势方法计算了N/F掺杂和N-F双掺杂锐钛矿相TiO2(101)表面的电子结构. 由于DFT方法存在对过渡金属氧化物带隙能的计算结果总是与实际值严重偏离的缺陷, 本文也采用DFT+U(Hubbard 系数)方法对模型的电子结构进行了计算. DFT的计算结果表明N掺杂后, N 2p轨道与O 2p和Ti 3d价带轨道的混合会导致TiO2带隙能的降低, 而F掺杂以及氧空位的引入对材料的电子结构没有明显的影响. DFT+U的计算却给出截然不同的结果, N掺杂并没有导致带隙能的降低, 而只是在带隙中引入一个孤立的杂质能级, 反而F掺杂以及氧空位的引入带来明显的带隙能降低. DFT+U的计算结果与一些实验测量结果能够较好地符合.  相似文献   

2.
N掺杂TiO_2光催化剂的微结构与吸光特性研究   总被引:1,自引:0,他引:1  
以紫外可见漫反射光谱(UV-VIS-DRS)和X射线光电子能谱(XPS)分析和研究了四种方法制备的N掺杂TiO2光催化剂的结构,即水解法(N/TiO2-H)、氨热还原法(N/TiO2-A)、机械化学法(N/TiO2-M)和尿素热处理法(N/TiO2-T)等.结果表明,N/TiO2-H和N/TiO2-T两种催化剂在490 nm处有吸收带边,可见光激发途径是掺杂的N以填隙方式形成的杂质能级吸收电子发生的跃迁引起的;而N/TiO2-A和N/TiO2-M两种催化剂在整个可见光区域内具有可见光吸收,其对可见光的激发途径是掺杂N和氧空缺共同作用的结果.理论计算的N杂质能级位于价带上0.75 eV,与实验观察到的吸收带边结果十分吻合.XPS结果表明,几种催化剂的N1 s结合能位置都在399 eV附近,显示为填隙掺杂的N原子.填隙掺杂的N/TiO2,其Ti原子的2p结合能与未掺杂的TiO2相比增加了+0.3-+0.6 eV,而O1s电子的结合能增加了+0.2-+0.5eV,这是因为填隙的N原子夺取Ti和O的电子,Ti和O原子周围的电子密度降低了.电子能谱和吸光特性的研究都表明,掺杂的机理是在TiO2晶格内形成N原子的填隙.  相似文献   

3.
采用基于密度泛函理论(DFT)的第一性原理平面波赝势法(PWP)计算Mn掺杂GaN(Ga1-xMnN)晶体的电子结构及光学性质,详细讨论掺杂后电子结构的变化.计算表明,Mn掺杂GaN使得Mn 3d与N 2p轨道杂化,产生自旋极化杂质带,Ga1-xMnxN表现为半金属性,非常适于自旋注入,说明该种材料是实现自旋电子器件的理想材料.另结合实验结果分析掺杂后体系的光学性质,发现吸收谱在1.3 eV处出现吸收峰,吸收系数随Mn2+浓度增加而增大.分析表明,该峰是源于Mn2+离子e态与t2态间的带内跃迁.  相似文献   

4.
使用DFT+U的方法研究了F,Si掺杂CeO2(001)表面的结构和电子结构,分析了F,Si掺杂对CeO2(001)表面还原性能的影响。结果表明:F,Si掺杂的CeO1.963(001)体系中表层氧空位形成能均小于次表层氧空位形成能。CeO1.963F0.037(001)面的氧空位形成能比CeO1.963(001)面的要大,而Ce0.926Si0.074O1.963(001)面的氧空位形成能比CeO1.963(001)面的要小。Si掺杂的CeO2(001)面局部晶格发生畸变,结构变得不稳定。CeO2(001)面的Ce 4f电子态部分占据费米能级,禁带宽度变为零,并且上下自旋电子态不对称;CeO1.926F0.037-sur面的Ce 4f电子态和O 2p电子态分布变得局域,费米能级处产...  相似文献   

5.
TiO_(2-y)N_x纳米光催化剂的制备及其可见光响应机理   总被引:2,自引:1,他引:1  
利用溶胶-凝胶技术,以尿素为氮源,采用原位掺杂方式制备了TiO2-yNx纳米粉体;以亚甲基蓝(MB)溶液在可见光下的光催化降解评价其可见光催化活性;考察了体系初始pH值、N的掺杂量和焙烧温度对样品可见光催化活性的影响。结合XRD、XPS、ESR和DRS测试技术,研究了N掺杂纳米TiO2的可见光响应机理。研究结果表明,TiO2-yNx纳米粉体的优化制备工艺条件为:体系初始pH=0.52,掺杂比n(N)∶n(Ti)=1∶6,焙烧温度为440℃。此条件下制备的样品N含量为0.77%,为单一的锐钛矿相,平均粒径为19.0nm,具有良好的可见光催化活性。N掺杂导致TiO2纳米粉体的表面羟基含量增加,形成了大量束缚单电子的氧空位;N取代晶格O形成了N—Ti—O和O—N—Ti键合结构。N掺杂导致TiO2纳米粒子的吸收带边红移,对可见光的吸收能力明显增强,这表明N掺杂改变TiO2电子结构,使带隙窄化,降低光响应阈值。N掺杂TiO2纳米粒子的可见光响应归因于N取代掺杂形成的掺杂能级与氧空位形成的缺陷能级共同作用所致。  相似文献   

6.
Al掺杂对锐钛矿型TiO2光催化性能影响的研究   总被引:1,自引:0,他引:1  
采用平面波赝势(PWPP)方法进行密度泛函(DFT)计算,研究了Al掺杂对锐钛矿晶体能带、态密度的影响.分析发现掺杂后Al原子3s和3p轨道上的电子虽然对晶体的价带和导带贡献不大,却诱使导带发生较大程度下移,禁带宽度减小,理论预测可以发生红移.采用低温燃烧合成法制备了Al掺杂锐钛矿型纳米TiO2,紫外-可见吸收光谱检测和甲基橙降解实验证明,Al掺杂TiO2光吸收强度增强,吸收带边界发生红移;光催化性能较纯TiO2有所改善.理论计算结果与实验结果相符.  相似文献   

7.
以尿素和磷酸为掺杂剂、冰醋酸为抑制剂,利用溶胶-水热技术制备了介孔锐钛矿型N-P-TiO2片状纳米粒子;以4-氯酚溶液在模拟太阳光照射下的光催化降解评价其光活性;结合XRD,TEM,BET,XPS,DRS,PL和ζ-电位分析,探讨了N和P掺杂对TiO2光活性的影响机制.结果表明,与未掺杂、N或P单掺杂TiO2相比,N-P共掺杂TiO2具有更高的光催化降解4-氯酚活性.N-P共掺杂TiO2的可见光响应是由N 2p,P 3p分别与O 2p轨道杂化导致带隙窄化引起的.N-P共掺杂产生协同作用,进一步改善TiO2的表面织构特性,增加表面羟基,抑制光生e-/h+复合,增强表面酸性提高其水分散性,导致N-P共掺杂TiO2的光活性提高.  相似文献   

8.
采用密度泛函理论(DFT)下的第一性原理平面波超软赝势方法计算了Bi掺杂前后锐钛矿相TiO2的电子结构和光学性质。结果分析发现:掺杂后Ti的电荷布居数下降,O的布居数增加;同时在TiO2禁带中引入了杂质能级,禁带宽度略微变大,但是杂质能级的作用抵消了禁带宽度变大带来的不利影响,使得掺杂后TiO2吸收带边红移并在可见光范围内吸收明显增强。  相似文献   

9.
ZnO和TiO2纳米粒子的光致发光性能及其与光催化活性的关系   总被引:17,自引:2,他引:15  
采用沉淀法和溶胶-凝胶法制备了ZnO和TiO2及掺Zn2+的TiO2纳米粒子,用XRD和荧光光谱(FS)等手段对样品进行了表征,重点探讨了样品光致发光机制及与光催化活性的关系.结果表明,ZnO和TiO2样品在大于带隙能的光激发下均表现出明显的FS信号,热处理温度升高,FS信号强度下降,并且二者的FS信号类似,这可能与二者具有类似的电子能带结构有关,同时也说明FS信号主要源于表面氧空位以及吸附氧物种等引起的激子或表面态能级.掺杂Zn2+使TiO2纳米粒子FS信号增强,这主要与表面氧空位和缺陷等量增加有关;此外,在光催化氧化苯酚实验中,样品光催化活性与其FS信号强度顺序一致,即FS信号越强,活性越高.这是由于在光致发光过程中,FS信号主要源于表面氧空位,而在光催化反应中,表面氧空位有利于氧化反应进行.  相似文献   

10.
采用酸催化水解法由TiCl4、NH4F混合液合成N、F共掺杂可见光响应TiO2光催化剂(TONF).以苯酚为模型物,考察了催化剂在可见光区、紫外光区的催化活性.采用X射线光电子能谱(XPS)、紫外.可见漫反射光谱(DRS)、X射线衍射(XRD)、打描电子显微镜(SEM)及低温氮物理吸附对光催化剂的晶相结构、光谱特征和表面结构等进行表征.结果表明,适量的N、F共掺杂TONF催化剂表现出较高的可见光催化活性.N、F共掺杂可显著提高TiO2分散性能,促进锐钛矿相的形成,抑制其向金红石相转变,提高相转变温度.N掺杂可提高TiO2在可见光区的吸收;F掺杂可使TiO2能隙变窄.  相似文献   

11.
Theoretical study of N-doped TiO2 rutile crystals   总被引:1,自引:0,他引:1  
The N-doping effects on the electronic and optical properties of TiO2 rutile crystal have been studied using density functional theory (DFT). The calculations of several possible N-doped structures show that band gaps have little reduction but some N 2p states lie within the band gap in the substitutional N to O structure and interstitial N-doped rutile supercell, which results in the reduction of the photon-transition energy and absorption of visible light. In contrast, substitutional N to Ti doped model has a significant band-gap narrowing. The results maybe clarify confusions in nitrogen-doped TiO2 rutile crystal.  相似文献   

12.
Second-generation TiO(2)-(x)D(x) photocatalysts doped with either anions (N, C, and S mostly) or cations have recently been shown to have their absorption edge red-shifted to lower energies (longer wavelengths), thus enhancing photonic efficiencies of photoassisted surface redox reactions. Some of the studies have proposed that this red-shift is caused by a narrowing of the band gap of pristine TiO(2) (e.g., anatase, E(bg) = 3.2 eV; absorption edge ca. 387 nm), while others have suggested the appearance of intragap localized states of the dopants. By contrast, a recent study by Kuznetsov and Serpone (J. Phys. Chem. B, in press) has proposed that the commonality in all these doped titanias rests with formation of oxygen vacancies and the advent of color centers (e.g., F, F(+), F(++), and Ti(3+)) that absorb the visible light radiation. This article reexamines the various claims and argues that the red-shift of the absorption edge is in fact due to formation of the color centers, and that while band gap narrowing is not an unknown occurrence in semiconductor physics it does necessitate heavy doping of the metal oxide semiconductor, thereby producing materials that may have completely different chemical compositions from that of TiO(2) with totally different band gap electronic structures.  相似文献   

13.
Electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations are combined for the first time in an effort to characterize the paramagnetic species present in N-doped anatase TiO2 powders obtained by sol-gel synthesis. The experimental hyperfine coupling constants are well reproduced by two structurally different nitrogen impurities: substitutional and interstitial N atoms in the TiO2 anatase matrix. DFT calculations show that the nitrogen impurities induce the formation of localized states in the band gap. Substitutional nitrogen states lie just above the valence band, while interstitial nitrogen states lie higher in the gap. Excitations from these localized states to the conduction band may account for the absorption edge shift toward lower energies (visible region) observed in the case of N-doped TiO2 with respect to pure TiO2 (UV region). Calculations also show that nitrogen doping leads to a substantial reduction of the energy cost to form oxygen vacancies in bulk TiO2. This suggests that nitrogen doping is likely to be accompanied by oxygen vacancy formation. Finally, we propose that the relative abundance of the two observed nitrogen-doping species depends on the preparation conditions, such as the oxygen concentration in the atmosphere and the annealing temperature during synthesis.  相似文献   

14.
The electronic properties of N-doped rutile TiO2(110) have been investigated using synchrotron-based photoemission and density-functional calculations. The doping via N2+ ion bombardment leads to the implantation of N atoms (approximately 5% saturation concentration) that coexist with O vacancies. Ti 2p core level spectra show the formation of Ti3+ and a second partially reduced Ti species with oxidation states between +4 and +3. The valence region of the TiO(2-x)N(y)(110) systems exhibits a broad peak for Ti3+ near the Fermi level and N-induced features above the O 2p valence band that shift the edge up by approximately 0.5 eV. The magnitude of this shift is consistent with the "redshift" observed in the ultraviolet spectrum of N-doped TiO2. The experimental and theoretical results show the existence of attractive interactions between the dopant and O vacancies. First, the presence of N embedded in the surface layer reduces the formation energy of O vacancies. Second, the existence of O vacancies stabilizes the N impurities with respect to N2(g) formation. When oxygen vacancies and N impurities are together there is an electron transfer from the higher energy 3d band of Ti3+ to the lower energy 2p band of the N(2-) impurities.  相似文献   

15.
作为光催化技术的核心, 提高TiO2的光催化活性和对可见光的利用率是当前光催化研究中最重要的研究课题. 为了提高TiO2纳米管的可见光催化活性, 采用化学气相沉积法对TiO2纳米管进行了氟掺杂. 扫描电子显微镜(SEM)结果表明退火温度对于TiO2纳米管的形貌完整性有较大影响, 当样品在550和700 °C下退火, 氟掺杂TiO2纳米管结构受损; X射线衍射(XRD)分析表明氟掺杂对TiO2由锐钛矿相转化为金红石相有阻碍作用; X射线光电子能谱(XPS)测试表明化学气相沉积能有效地对TiO2纳米管进行非金属掺杂, 且该方法安全、操作简单. 氟掺杂TiO2纳米管对甲基橙有较高的可见光催化降解活性. 第一性原理计算结果表明氟掺杂对TiO2带隙无显著影响, 费米能级附近的F 2p轨道电子位于价带底部, 与O 2p交联作用较小, 因此对TiO2光吸收带边影响不大. 氟掺杂能促进表面氧空穴的产生, 增加表面酸度与Ti3+, 有利于减少电子-空穴复合率, 从而提高其光催化活性.  相似文献   

16.
Impurity formation energy, electronic structure, and photocatalytic properties of C-, N-, or S-doped BiOCl are investigated by density-functional theory plus U calculations(DFT + U). Results show that the doping effect of S is better than that of C or N on the tunable photocatalytic activities of BiOCl. At low concentration, S-doped BiOCl systems are the most stable under Bi-rich growth conditions because of their lower impurity-formation energy. Compared with the electronic structures of S-doped BiOCl, C-or N-doped BiOCl have relatively deeper impurity energy levels appearing in their band gap(except Bi_(36)O_(35)NCl_(36)), which may act as photogenerated carrier-recombination centers and reduce photocatalytic activity. At high concentration, S is substituted on the O lattice site system, whereas some S 3p states mix with the valence band; this mixture leads to an obvious band-gap decrease and continuum-state formation above the valence-band edge of BiOCl. Such activity is advantageous to photochemical catalysis response. Compared with pure Bi OCl and a low-concentration S-doped system, a high-concentration S-doped system shows an obvious redshift on the absorption edge and has better photocatalytic O_2 evolution performance.  相似文献   

17.
To provide insights into the adsorption and photoreduction of uranium(VI) on TiO(2), we have studied the structural and electronic properties of uranium(VI) aquo complexes adsorbed on stoichiometric and defected TiO(2) surfaces and nanoparticles. Plane wave calculations with the pure PBE density functional and the PBE+U approach were used to study U(VI) complexes on a periodic rutile (110) slab. In addition, a nanoparticulate Ti(38)O(76) cluster was used to simulate anatase nanoparticles. The electronic structures of the adsorbed U(VI) complexes indicate that the photoreduction process is a consequence of the photocatalytic properties of TiO(2). The reduction of the adsorbed complexes can only occur if the energy of the incident photon exceeds the semiconductor band gap. The gap states induced by single or neighboring hydrogen atoms and oxygen vacancies at the rutile (110) surface cannot reduce adsorbed U(VI) complexes as the unoccupied 5f orbitals are found deeper in the conduction band. In the absence of a solid substrate, photoreduction proceeds by abstraction of a hydrogen atom from water or organic molecules present in solution. Photoreduction by chlorophenol results in lower product yield than reduction by aliphatic alcohols. This is because the triplet uranyl-chlorophenol complex is much more stable than similar complexes formed with methanol and ethanol. In the case of water, the hydroxyl photoproduct easily re-oxidizes the pentavalent species formed. In addition, it is easier for the triplet uranyl-water complex to decompose to the photoreactants.  相似文献   

18.
The effect of N‐doping on the paramagnetic–antiferromagnetic transition associated with the metal–insulator (M–I) transition of V2O3 at 150 K has been studied in bulk samples as well as in nanosheets. The magnetic transition temperature of V2O3 is lowered to ~120 K in the N‐doped samples. Electrical resistivity data also indicate a similar lowering of the M–I transition temperature. First‐principles DFT calculations reveal that anionic (N) substitution and the accompanying oxygen vacancies reduce the energy of the high‐temperature metallic corundum phase relative to the monoclinic one leading to the observed reduction in Nèel temperature. In the electronic structure of N‐substituted V2O3, a sub‐band of 2p states of trivalent anion (N) associated with its strong bond with the vanadium cation appears at the top of the band of O(2p) states, the 3d‐states of V being slightly higher in energy. Its band gap is thus due to crystal field splitting of the degenerate d‐orbitals of vanadium and superexchange interaction, which reduces notably (ΔEg=?0.4 eV) due to their hybridization with the 2p states of nitrogen. A weak magnetic moment arises in the monoclinic phase of N‐substituted V2O3 with O‐vacancies, with a moment of ?1 μB/N localized on vanadium atoms in the vicinity of oxygen vacancies.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号