首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Kinetic studies on the substitution reaction between [Fe(4)S(4)Cl(4)](2-) and Bu(t)NC or Et(2)NCS(2)(-) are reported. The binding of small molecules and ions to Fe-S clusters is a fundamental step in substitution reactions but can be difficult to follow directly because these reactions are rapid and often associated with small spectroscopic changes. A novel kinetic method is reported which allows the time course of molecule and ion binding to Fe-S clusters to be followed by monitoring the lability of the cluster. Using a stopped-flow, sequential-mix apparatus, [Fe(4)S(4)Cl(4)](2-) and L (L = Et(2)NCS(2)(-) or Bu(t)NC) are rapidly mixed, and after a known time (delta) the resulting solution is mixed with a solution of PhS(-). The thiolate substitutes for the chloro ligands on the cluster, in a reaction which is easy to follow because of the large change in the visible absorption spectrum. The rate of this substitution is extremely sensitive to whether L is bound to the cluster or not. By correlation of delta with the rate of the reaction with PhS(-), the time course of the reaction between [Fe(4)S(4)Cl(4)](2-) and L can be mapped out. In studies where L = Bu(t)NC this technique has allowed the detection of an intermediate ([Fe(4)S(4)Cl(4)(CNBu(t))](2-)) which cannot be detected spectrophotometrically. In further studies, the substitution reactions of [Fe(4)S(4)Cl(4)](2-) with PhS(-), Et(2)NCS(2)(-), or Bu(t)NC are all perturbed by the addition of Cl(-). In all cases a common pathway for substitution is evident, but with Et(2)NCS(2)(-) an additional, slower pathway becomes apparent under conditions where the common pathway is completely inhibited by Cl(-).  相似文献   

2.
Comparisons (25 degrees C) are made of substitution reactions, X replacing H(2)O, at the tetrahedral Ni of the heterometallic sulfido cuboidal cluster [Mo(3)NiS(4)(H(2)O)(10)](4+), I = 2.00 M (LiClO(4)). Stopped-flow formation rate constants (k(f)/M(-)(1) s(-)(1)) for six X reagents, including two water soluble air-stable phosphines, 1,3,5-triaza-7-phosphaadamantane PTA (119) and tris(3-sulfonatophenyl)phosphine TPPTS(3)(-) (58), and CO (0.66), Br(-) (14.6), I(-) (32.3), and NCS(-) (44) are reported alongside the previous value for Cl(-) (9.4). A dependence on [H(+)] is observed with PTA, which gives an unreactive form confirmed by NMR as N-protonated PTA (acid dissociation constant K(a) = 0.61 M), but in no other cases with [H(+)] in the range 0.30-2.00 M. The narrow spread of rate constants for all but the CO reaction is consistent with an I(d) dissociative interchange mechanism. In addition NMR studies with H(2)(17)O enriched solvent are too slow for direct determination of the water-exchange rate constant indicating a value <10(3) s(-)(1). Equilibrium constants/M(-)(1) for 1:1 complexing with the different X groups at the Ni are obtained for PTA (2040) and TPPTS(3)(-) (8900) by direct spectrophotometry and from kinetic studies (k(f)/k(b)) for Cl(-) (97), Br(-) (150), NCS(-) (690), and CO (5150). No NCS(-) substitution at the Ni is observed in the case of the heterometallic cube [Mo(3)Ni(L)S(4)(H(2)O)(9)](4+), with tridentate 1,4,7-triazacyclononane(L) coordinated to the Ni. Substitution of NCS(-) for H(2)O, at the Mo's of [Mo(3)NiS(4)(H(2)O)(10)](4+) and [Mo(3)(NiL)S(4)(H(2)O)(9)](4+) are much slower secondary processes, with k(f) = 2.7 x 10(-)(4) M(-)(1) s(-)(1) and 0.94 x 10(-)(4) M(-)(1) s(-)(1) respectively. No substitution of H(2)O by TPPTS(3)(-) or CO is observed over approximately 1h at either metal on [Mo(3)FeS(4)(H(2)O)(10)](4+), on [Mo(4)S(4)(H(2)O)(12)](5+) or [Mo(3)S(4)(H(2)O)(9)](4+).  相似文献   

3.
The kinetics of the reactions between [Zn4(SPh)10](2-) and an excess of MX2 (M = Co, X = NO3 or Cl; M = Fe, X = Cl), in which a Zn(II) is replaced by M(II), have been studied in MeCN at 25.0 degrees C. (1)H NMR spectroscopy shows that the ultimate product of the reactions is an equilibrium mixture of clusters of composition [Zn(n)M(4-n)(SPh)10](2-), and this is reflected in the multiphasic absorbance-time curves observed over protracted times (several minutes) using stopped-flow spectrophotometry to study the reactions. The kinetics of only the first phase have been determined, corresponding to the equilibrium formation of [Zn3M(SPh)10](2-). The effects of varying the concentrations of cluster, MX2, and ZnCl2 on the kinetics have been investigated. The rate law is consistent with the equilibrium nature of the metal exchange process and indicates a mechanism for the formation of [Zn3M(SPh)10](2-) involving two coupled equilibria. In the initial step binding of MX2 to a bridging thiolate in [Zn4(SPh)10](2-) results in breaking of a Zn-bridging thiolate bond. In the second step replacement of the cluster Zn involves transfer of the bridging thiolates from the Zn to M, with breaking of a Zn-bridged thiolate bond being rate-limiting. The kinetics for the reaction of ZnCl2 with [Zn3M(SPh)10](2-) (M = Fe or Co)} depends on the identity of M. This behavior indicates attack of ZnCl2 at a M-mu-SPh-Zn bridged thiolate. Similar studies on the analogous reactions between [Fe4(SPh)10](2-) and an excess of CoX2 (X = NO3 or Cl) in MeCN exhibit simpler kinetics but these are also consistent with the same mechanism.  相似文献   

4.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

5.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Bi(III) in the presence of BH(4)(-) (rapid), or with Bi metal shot (3-4 days), gives a heterometallic cluster product. The latter has been characterized as the corner-shared double cube [Mo(6)BiS(8)(H(2)O)(18)](8+) by the following procedures. Analyses by ICP-AES confirm the Mo:Bi:S ratio as 6:1:8. Elution from a cation-exchange column by 4 M Hpts (Hpts = p-toluenesulfonic acid), but not 2 M Hpts (or 4 M HClO(4)), is consistent with a high charge. The latter is confirmed as 8+ from the 3:1 stoichiometries observed for the oxidations with [Co(dipic)(2)](-) or [Fe(H(2)O)(6)](3+) yielding [Mo(3)S(4)(H(2)O)(9)](4+) and Bi(III) as products. Heterometallic clusters [Mo(6)MS(8)(H(2)O)(18)](8+) are now known for M = Hg, In, Tl, Sn, Pb, Sb, and Bi and are a feature of the P-block main group metals. The color of [Mo(6)BiS(8)(H(2)O)(18)](8+) in 2.0 M Hpts (turquoise) is different from that in 2.0 M HCl (green-blue). Kinetic studies (25 degrees C) for uptake of a single chloride k(f) = 0.80 M(-)(1) s(-)(1), I = 2.0 M (Hpts), and the high affinity for Cl(-) (K > 40 M(-)(1)) exceeds that observed for complexing at Mo. A specific heterometal interaction of the Cl(-) not observed in the case of other double cubes is indicated. The Cl(-) can be removed by cation-exchange chromatography with retention of the double-cube structure. Kinetic studies with [Co(dipic)(2)](-) and hexaaqua-Fe(III) as oxidants form part of a survey of redox properties of this and other clusters. The Cl(-) adduct is more readily oxidized by [Co(dipic)(2)](-) (factor of approximately 10) and is also more air sensitive.  相似文献   

6.
The kinetics of the reaction between [S(2)MoS(2)Cu(SC(6)H(4)R-4)](2-)(R = MeO, H, Cl or NO(2)) and CN(-) to form [S(2)MoS(2)CuCN](2-) have been studied in MeCN using stopped-flow spectrophotometry. In all cases, the rate law is of the form, Rate ={k+k(2)(R)[CN(-)]}[S(2)MoS(2)Cu(SC(6)H(4)R-4)(2-)]. It is proposed that both k and k correspond to associative substitution mechanisms. The k pathway involves attack by CN(-) at the copper site followed by dissociation of the thiolate. The k pathway involves attack of the solvent (MeCN) at the copper site, followed by dissociation of the thiolate to form [S(2)MoS(2)Cu(NCMe)](-). Subsequent rapid substitution of the coordinated solvent by cyanide produces [S(2)MoS(2)CuCN](2-). The evidence that both the k and k pathways involve associative mechanisms are: (i) the 4-R-substituent on the thiolate ligand has a similar effect on both k and k, with electron-withdrawing 4-R-substituents facilitating substitution; (ii) both the k and k pathways are associated with similar activation parameters (for k(1)(H): DeltaH++ = 5.5 +/- 0.5 kcal mol(-1), DeltaS++ = -23.9 +/- 2.0 cal deg(-1) mol(-1); for k(2)(H): DeltaH++ = 2.3 +/- 0.5 kcal mol(-1), DeltaS++ = - 23.9 +/- 2.0 cal deg(-1) mol(-1)) and (iii) addition of C(6)H(5)S(-) results in a similar increase in both k and k.  相似文献   

7.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

8.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

9.
A series of new heterometallic coordination polymers has been prepared from the reaction of metal-ligand cations and KAg(CN)(2) units. Many of these contain silver-silver (argentophilic) interactions, analogous to gold-gold interactions, which serve to increase supramolecular structural dimensionality. Compared to [Au(CN)(2)](-) analogues, these polymers display new trends specific to [Ag(CN)(2)](-), including the formation of [Ag(2)(CN)(3)](-) and the presence of Ag...N interactions. [Cu(en)(2)][Ag(2)(CN)(3)][Ag(CN)(2)] (1, en = ethylenediamine) forms 1-D chains of alternating [Ag(CN)(2)](-) and [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.102(1) A. These chains are connected into a 2-D array by strong cyano(N)-Ag interactions of 2.572(3) A. [Cu(dien)Ag(CN)(2)](2)[Ag(2)(CN)(3)][Ag(CN)(2)] (2, dien = diethylenetriamine) forms a 1-D chain of alternating [Cu(dien)](2+) and [Ag(CN)(2)](-) ions with the Cu(II) atoms connected in an apical/equatorial fashion. These chains are cross-linked by [Ag(2)(CN)(3)](-) units via argentophilic interactions of 3.1718(8) A and held weakly in a 3-D array by argentophilic interactions of 3.2889(5) A between the [Ag(CN)(2)](-) in the 2-D array and the remaining free [Ag(CN)(2)](-). [Ni(en)][Ni(CN)(4)].2.5H(2)O (4) was identified as a byproduct in the reaction to prepare the previously reported [Ni(en)(2)Ag(2)(CN)(3)][Ag(CN)(2)] (3). In [Ni(tren)Ag(CN)(2)][Ag(CN)(2)] (5, tren = tris(2-aminoethyl)amine), [Ni(tren)](2+) cations are linked in a cis fashion by [Ag(CN)(2)](-) anions to form a 1-D chain similar to the [Au(CN)(2)](-) analogue. [Cu(en)Cu(CN)(2)Ag(CN)(2)] (6) is a trimetallic polymer consisting of interpenetrating (6,3) nets stabilized by d(10)-d(10) interactions between Cu(I)-Ag(I) (3.1000(4) A). Weak antiferromagnetic coupling has been observed in 2, and a slightly stronger exchange has been observed in 6. The Ni(II) complexes, 4 and 5, display weak antiferromagnetic interactions as indicated by their relatively larger D values compared to that of 3. Magnetic measurements on isostructural [Ni(tren)M(CN)(2)][M(CN)(2)] (M = Ag, Au) show that Ag(I) is a more efficient mediator of magnetic exchange as compared to Au(I). The formation of [Ni(CN)(4)](2)(-), [Ag(2)(CN)(3)](-), and [Cu(CN)(2)](-) are all attributed to secondary reactions of the dissociation products of the labile KAg(CN)(2).  相似文献   

10.
Smith DM  Park CW  Ibers JA 《Inorganic chemistry》1996,35(23):6682-6687
2.2.2-Cryptand(1+) salts of the [Sb(2)Se(4)](2)(-), [As(2)S(4)](2)(-), [As(10)S(3)](2)(-), and [As(4)Se(6)](2)(-) anions have been synthesized from the reduction of binary chalcogenide compounds by K in NH(3)(l) in the presence of the alkali-metal-encapsulating ligand 2.2.2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane), followed by recrystallization from CH(3)CN. The [Sb(2)Se(4)](2)(-) anion, which has crystallographically imposed symmetry 2, consists of two discrete edge-sharing SbSe(3) pyramids with terminal Se atoms cis to each other. The Sb-Se(t) bond distance is 2.443(1) ?, whereas the Sb-Se(b) distance is 2.615(1) ? (t = terminal; b = bridge). The Se(b)-Sb-Se(t) angles range from 104.78(4) to 105.18(5) degrees, whereas the Se(b)-Sb-Se(b) angles are 88.09(4) and 88.99(4) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 337 and 124 ppm, 1:1 intensity, -30 degrees C, CH(3)CN/CD(3)CN). Similar to this [Sb(2)Se(4)](2)(-) anion, the [As(2)S(4)](2)(-) anion consists of two discrete edge-sharing AsS(3) pyramidal units. The As-S(t) bond distances are 2.136(7) and 2.120(7) ?, whereas the As-S(b) distances range from 2.306(7) to 2.325(7) ?. The S(b)-As-S(t) angles range from 106.2(3) to 108.2(3) degrees, and the S(b)-As-S(b) angles are 88.3(2) and 88.9(2) degrees. The [As(10)S(3)](2)(-) anion has an 11-atom As(10)S center composed of six five-membered edge-sharing rings. One of the three waist positions is occupied by a S atom, and the other two waist positions feature As atoms with exocyclic S atoms attached, making each As atom in the structure three-coordinate. The As-As bond distances range from 2.388(3) to 2.474(3) ?. The As-S(t) bond distances are 2.181(5) and 2.175(4) ?, and the As-S(b) bond distance is 2.284(6) ?. The [As(4)Se(6)](2)(-) anion features two AsSe(3) units joined by Se-Se bonds with the two exocyclic Se atoms trans to each other. The average As-Se(t) bond distance is 2.273(2) ?, whereas the As-Se(b) bond distances range from 2.357(3) to 2.462(2) ?. The Se(b)-As-Se(t) angles range from 101.52(8) to 105.95(9) degrees, and the Se(b)-As-Se(b) angles range from 91.82(7) to 102.97(9) degrees. The (77)Se NMR data for this anion in solution are consistent with its X-ray structure (delta 564 and 317 ppm, 3:1 intensity, 25 degrees C, DMF/CD(3)CN).  相似文献   

11.
A reinvestigation of the redox behavior of the [Fe(3)(&mgr;(3)-S)(CO)(9)](2)(-) dianion led to the isolation and characterization of the new [Fe(5)S(2)(CO)(14)](2)(-), as well as the known [Fe(6)S(6)(CO)(12)](2)(-) dianion. As a corollary, new syntheses of the [Fe(3)S(CO)(9)](2)(-) dianion are also reported. The [Fe(5)S(2)(CO)(14)](2)(-) dianion has been obtained by oxidative condensation of [Fe(3)S(CO)(9)](2)(-) induced by tropylium and Ag(I) salts or SCl(2), or more straightforwardly through the reaction of [Fe(4)(CO)(13)](2)(-) with SCl(2). The [Fe(6)S(6)(CO)(12)](2)(-) dianion has been isolated as a byproduct of the synthesis of [Fe(3)S(CO)(9)](2)(-) and [Fe(5)S(2)(CO)(14)](2)(-) or by reaction of [Fe(4)(CO)(13)](2)(-) with elemental sulfur. The structures of [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)] and [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)] were determined by single-crystal X-ray diffraction analyses. Crystal data: for [N(PPh(3))(2)](2)[Fe(5)S(2)(CO)(14)], monoclinic, space group P2(1)/c (No. 14), a = 24.060(5), b = 14.355(6), c = 23.898(13) ?, beta = 90.42(3) degrees, Z = 4; for [N(PPh(3))(2)](2)[Fe(6)S(6)(CO)(12)], monoclinic, space group C2/c (No. 15), a = 34.424(4), b = 14.081(2), c = 19.674(2) ?, beta = 115.72(1) degrees, Z = 4. The new [Fe(5)S(2)(CO)(14)](2)(-) dianion shows a "bow tie" arrangement of the five metal atoms. The two Fe(3) triangles sharing the central Fe atom are not coplanar and show a dihedral angle of 55.08(3) degrees. Each Fe(3) moiety is capped by a triply bridging sulfide ligand. The 14 carbonyl groups are all terminal; two are bonded to the unique central atom and three to each peripheral iron atom. Protonation of the [Fe(5)S(2)(CO)(14)](2)(-) dianion gives reversibly rise to the corresponding [HFe(5)S(2)(CO)(14)](-) monohydride derivative, which shows an (1)H-NMR signal at delta -21.7 ppm. Its further protonation results in decomposition to mixtures of Fe(2)S(2)(CO)(6) and Fe(3)S(2)(CO)(9), rather than formation of the expected H(2)Fe(5)S(2)(CO)(14) dihydride. Exhaustive reduction of [Fe(5)S(2)(CO)(14)](2)(-) with sodium diphenyl ketyl progressively leads to fragmentation into [Fe(3)S(CO)(9)](2)(-) and [Fe(CO)(4)](2)(-), whereas electrochemical, as well as chemical oxidation with silver or tropylium tetrafluoroborate, in dichloromethane, generates the corresponding [Fe(5)S(2)(CO)(14)](-) radical anion which exhibits an ESR signal at g = 2.067 at 200 K. The electrochemical studies also indicated the existence of a subsequent one-electron anodic oxidation which possesses features of chemical reversibility in dichloromethane but not in acetonitrile solution. A reexamination of the electrochemical behavior of the [Fe(3)S(CO)(9)](2)(-) dianion coupled with ESR monitoring enabled the spectroscopic characterization of the [Fe(3)S(CO)(9)](-) radical monoanion and demonstrated its direct involvement in the generation of the [Fe(5)S(2)(CO)(14)](n)()(-) (n = 0, 1, 2) system.  相似文献   

12.
The results of all-electron density functional calculations on the bimetallic cluster compounds [M(4){Fe(CO)(4)}(4)](4-) (M = Cu, Ag, Au) and on the corresponding naked species M(4)Fe(4) are reported. The trends within the triad have been investigated. The bare metal clusters exhibit a strong magnetization which is quenched on addition of CO ligands. The bonding in the bare clusters is different for the silver derivative compared to that of copper and gold, resulting in comparatively weaker Ag-Fe and Ag-Ag bonds. This can be rationalized in terms of the different d-sp mixing, which for Cu and Au is larger than for Ag. Relativistic effects act to increase the 4d-5s mixing in Ag and to strengthen the intermetallic bond with Fe. In the carbonylated clusters a charge transfer from the metal M (M = Cu, Ag, or Au) to the Fe(CO)(4) groups occurs so that the atoms M can be considered in a formal +I oxidation state, rationalizing the nearly square-planar geometry of the metal frame. In fact, the local coordination of the M atoms is almost linear, as expected for complexes of M(I). The addition of extra electrons results in a stabilization of the clusters, indicating the electron-deficient nature of these compounds. Similar features have been found for the largest cluster synthesized so far for this class of compounds, [Ag(13){Fe(CO)(4)}(8)](n)(-), (n = 0-5). The nature and localization of the unpaired electron in the tetraanion is also discussed.  相似文献   

13.
Hauser C  Bill E  Holm RH 《Inorganic chemistry》2002,41(6):1615-1624
A new series of cubane-type [VFe(3)S(4)](z)() clusters (z = 1+, 2+, 3+) has been prepared as possible precursor species for clusters related to those present in vanadium-containing nitrogenase. Treatment of [(HBpz(3))VFe(3)S(4)Cl(3)](2)(-) (2, z = 2+), protected from further reaction at the vanadium site by the tris(pyrazolyl)hydroborate ligand, with ferrocenium ion affords the oxidized cluster [(HBpz(3))VFe(3)S(4)Cl(3)](1)(-) (3, z = 3+). Reaction of 2 with Et(3)P results in chloride substitution to give [(HBpz(3))VFe(3)S(4)(PEt(3))(3)](1+) (4, z = 2+). Reaction of 4 with cobaltocene reduced the cluster with formation of the edge-bridged double-cubane [(HBpz(3))(2)V(2)Fe(6)S(8)(PEt(3))(4)] (5, z = 1+, 1+), which with excess chloride underwent ligand substitution to afford [(HBpz(3))(2)V(2)Fe(6)S(8)Cl(4)](4)(-) (6, z = 1+, 1+). X-ray structures of (Me(4)N)[3], [4](PF(6)), 5, and (Et(4)N)(4)[6] x 2MeCN are described. Cluster 5 is isostructural with previously reported [(Cl(4)cat)(2)(Et(3)P)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] and contains two VFe(3)S(4) cubanes connected across edges by a Fe(2)S(2) rhomb in which the bridging Fe-S distances are shorter than intracubane Fe-S distances. M?ssbauer (2-5), magnetic (2-5), and EPR (2, 4) data are reported and demonstrate an S = 3/2 ground state for 2 and 4 and a diamagnetic ground state for 3. Analysis of (57)Fe isomer shifts based on an empirical correlation between shift and oxidation state and appropriate reference shifts results in two conclusions. (i) The oxidation 2 --> 3 + e(-) results in a change in electron density localized largely or completely on the Fe(3) subcluster and associated sulfur atoms. (ii) The most appropriate charge distributions are [V(3+)Fe(3+)Fe(2+)(2)S(4)](2+) (Fe(2.33+)) for 1, 2, and 4 and [V(3+)Fe(3+)(2)Fe(2+)S(4)](3+) (Fe(2.67+)) for 3 and [V(2)Fe(6)S(8)(SEt)(9)](3+). Conclusion i applies to every MFe(3)S(4) cubane-type cluster thus far examined in different redox states at parity of cluster ligation. The formalistic charge distributions are regarded as the best current approximations to electron distributions in these delocalized species. The isomer shifts require that iron atoms are mixed-valence in each cluster.  相似文献   

14.
Iron-sulfur clusters containing a singly or doubly NH.S hydrogen-bonded arenethiolate ligand, [Fe(4)S(4)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), [Fe(4)S(4){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), [Fe(2)S(2)(S-2-RCONHC(6)H(4))(4)](2)(-) (R = CH(3), t-Bu, CF(3)), and [Fe(2)S(2){S-2,6-(RCONH)(2)C(6)H(3)}(4)](2)(-), were synthesized as models of bacterial [4Fe-4S] and plant-type [2Fe-2S] ferredoxins. The X-ray structures and IR spectra of (PPh(4))(2)[Fe(4)S(4){S-2,6-(CH(3)CONH)(2)C(6)H(3)}(4)].2CH(3)CN and (NEt(4))(2)[Fe(2)S(2){S-2,6-(t-BuCONH)(2)C(6)H(3)}(4)] indicate that the two amide NH groups at the o,o'-positions are directed to the thiolate sulfur atom and form double NH.S hydrogen bonds. The NH.S hydrogen bond contributes to the positive shift of the redox potential of not only (Fe(4)S(4))(+)/(Fe(4)S(4))(2+) but also (Fe(4)S(4))(2+)/(Fe(4)S(4))(3+) in the [4Fe-4S] clusters as well as (Fe(2)S(2))(2+)/(Fe(2)S(2))(3+) in the [2Fe-2S] clusters. The doubly NH.S hydrogen-bonded thiolate ligand effectively prevents the ligand exchange reaction by benzenethiol because the two amide NH groups stabilize the thiolate by protection from dissociation.  相似文献   

15.
The clusters [Fe(6)S(8)(PEt(3))(6)](+,2+) have been shown by other investigators to be formed by the reaction of [Fe(OH(2))(6)](2+) and H(2)S, to contain face-capped octahedral Fe(6)S(8) cores, and to be components of the five-membered electron transfer series [Fe(6)S(8)(PEt(3))(6)](n)()(+) (n = 0-4) estalished electrochemically. We have prepared two additional series members. Reaction of [Fe(6)S(8)(PEt(3))(6)](2+) with iodine in dichloromethane affords [Fe(6)S(8)(PEt(3))(6)](3+), isolated as the perchlorate salt (48%). Reduction of [Fe(6)S(8)(PEt(3))(6)](2+) with Na(Ph(2)CO) in acetonitrile/THF produces the neutral cluster [Fe(6)S(8)(PEt(3))(6)] (65%). The structures of the four clusters with n = 0, 1+, 2+, 3+ were determined at 223 K. The compounds [Fe(6)S(8)(PEt(3))(6)](ClO(4))(3), [Fe(6)S(8)(PEt(3))(6)] crystallize in trigonal space group R&thremacr;c with a = 21.691(4), 16.951(4) ?, c = 23.235(6), 19.369(4) ?, and Z = 6, 3. The compounds [Fe(6)S(8)(PEt(3))(6)](BF(4))(2), [Fe(6)S(8)(PEt(3))(6)](BF(4)).2MeCN were obtained in monoclinic space groups P2(1)/c, C2/c with a = 11.673(3), 16.371(4) ?, b = 20.810(5), 16.796(4) ?, c = 12.438(4), 23.617(7) ?, beta = 96.10(2), 97.98(2) degrees, and Z = 2, 4. [Fe(6)S(8)(PEt(3))(6)](BPh(4))(2) occurred in trigonal space group P&onemacr; with a = 11.792(4) ?, b = 14.350(5) ?, c = 15.536(6) ?, alpha = 115.33(3) degrees, beta = 90.34(3) degrees, gamma = 104.49(3) degrees, and Z = 1. Changes in metric features across the series are slight but indicate increasing population of antibonding Fe(6)S(8) core orbitals upon reduction. Zero-field M?ssbauer spectra are consistent with this result, isomer shifts increasing by ca. 0.05 mm/s for each electron added, and indicate a delocalized electronic structure. Magnetic susceptibility measurements together with previously reported results established the ground states S = (3)/(2) (3+), 3 (2+), (7)/(2) (1+), 3 (0). The clusters [Fe(6)S(8)(PEt(3))(6)](n)()(+) possess the structural and electronic features requisite to multisequential electron transfer reactions. This work provides the first example of a cluster type isolated over four consecutive oxidation states. Note is also made of the significance of the [Fe(6)S(8)(PEt(3))(6)](n)()(+) cluster type in the development of iron-sulfur-phosphine cluster chemistry.  相似文献   

16.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

17.
Electron-rich polyisocyano derivatives Fe(2)(S(2)C(n)H(2n)(CO)(6-x)(CNMe)(x) (x approximately 4) undergo oxidatively induced (FeCp(2)(+)) reaction with additional CNMe to give [Fe(2)(SR)(2)(CNMe)(7)](PF(6))(2), a new class of iron thiolates. Crystallographic characterization established that the 34 e(-) dinuclear core resembles the oxidized (H(2)-binding) form of the active sites of the Fe-only hydrogenases, key features being the face-sharing bioctahedral geometry, the mu-CX ligand, and an Fe-Fe separation of 2.61 A. Oxidation of the phenylthiolate Fe(2)(SPh)(2)(CO)(2)(CNMe)(4) led to mononuclear [Fe(SPh)(CNMe)(5)](PF(6)), which is analogous to [Fe(2)(SR)(2)(CNMe)(10)](PF(6))(2) formed upon treatment of [Fe(2)(S(2)C(3)H(6))(CNMe)(7)](PF(6))(2) with excess CNMe.  相似文献   

18.
The preparations, X-ray structures, and detailed physical characterizations are presented for three new tetranuclear Fe(III)/RCO(2)(-)/phen complexes, where phen = 1,10-phenanthroline: [Fe(4)(OHO)(OH)(2)(O(2)CMe)(4)(phen)(4)](ClO(4))(3).4.4MeCN.H(2)O (1.4.4MeCN.H(2)O); [Fe(4)O(2)(O(2)CPh)(7)(phen)(2)](ClO(4)).2MeCN (2.2MeCN); [Fe(4)O(2)(O(2)CPh)(8)(phen)(2)].2H(2)O (3.2H(2)O). Complex 1.4.4MeCN.H(2)O crystallizes in space group P2(1)/n, with a = 18.162(9) A, b = 39.016(19) A, c = 13.054(7) A, beta = 104.29(2) degrees, Z = 4, and V = 8963.7 A(3). Complex 2.2MeCN crystallizes in space group P2(1)/n, with a = 18.532(2) A, b = 35.908(3) A, c = 11.591(1) A, beta = 96.42(1) degrees, Z = 4, and V = 7665(1) A(3). Complex 3.2H(2)O crystallizes in space group I2/a, with a = 18.79(1) A, b = 22.80(1) A, c = 20.74(1) A, beta = 113.21(2) degrees, Z = 4, and V = 8166(1) A(3). The cation of 1 contains the novel [Fe(4)(mu(4)-OHO)(mu-OH)(2)](7+) core. The core structure of 2 and 3 consists of a tetranuclear bis(mu(3)-O) cluster disposed in a "butterfly" arrangement. Magnetic susceptibility data were collected on 1-3 in the 2-300 K range. For the rectangular complex 1, fitting the data to the appropriate theoretical chi(M) vs T expression gave J(1) = -75.4 cm(-1), J(2) = -21.4 cm(-1), and g = 2.0(1), where J(1) and J(2) refer to the Fe(III)O(O(2)CMe)(2)Fe(III) and Fe(III)(OH)Fe(III) pairwise exchange interactions, respectively. The S = 0 ground state of 1 was confirmed by 2 K magnetization data. The data for 2 and 3 reveal a diamagnetic ground state with antiferromagnetic exchange interactions among the four high-spin Fe(III) ions. The exchange coupling constant J(bb) ("body-body" interaction) is indeterminate due to prevailing spin frustration, but the "wing-body" antiferromagnetic interaction (J(wb)) was evaluated to be -77.6 and -65.7 cm(-1) for 2 and 3, respectively, using the appropriate spin Hamiltonian approach. M?ssbauer spectra of 1-3 are consistent with high-spin Fe(III) ions. The data indicated asymmetry of the Fe(4) core of 1 at 80 K, which is not detected at room temperature due to thermal motion of the core. The spectra of 2 and 3 analyze as two quadrupole-split doublets which were assigned to the body and wing-tip pairs of metal ions. (1)H NMR spectra are reported for 1-3 with assignment of the main resonances.  相似文献   

19.
Two enantiomers of [Bu(4)N](3)[Cu(3)(mnt)(3)] () formed by Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2-)) and CuCl in a 1 : 1 molar ratio react further with MCl (M = Cu or Ag) involving both the enantiomers of to produce the larger complex, [Bu(4)N](4)[Cu(6)M(2)(mnt)(6)] (M = Cu (2), Ag (3)) from which the capped Cu(+) or Ag(+) ion can readily be removed by Bu(4)NX (X = Cl, Br), reverting or back to . Such reversal does not work with non-coordinating anions like BF(4)(-), ClO(4)(-) and PF(6)(-).  相似文献   

20.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号