首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Coordination polymers, {[Cd(2-mBIM)3](ClO4)2} n (1) and [Cd(BIM)2(NO3)2] n (2), have been prepared from the reaction of bis(2-methylimidazol-1-yl)methane(2-mBIM) with Cd(ClO4)2 and bis(imidazol-1-yl)methane (BIM) with Cd(NO3)2 in ethanol and water, respectively. Their structures were characterized by single crystal X-ray diffraction and IR spectroscopy. Compound 1 crystallizes in the rhombohedral space group R-3c with a = b = 12.3617(5) Å, c = 38.896(3) Å, γ = 120°, V = 5147.5(5) Å3, z = 6. The CdII occupies a crystallographic inversion center and is coordinated by six N atoms from six distinct 2-mBIM ligands to form a slightly distorted octahedral geometry. Each 2-mBIM is coordinated to two CdII cations, linking alternatively four CdII cations, resulting in a 32-membered M4L4 macrometallacycle. Compound 2 crystallizes in the monoclinic space group C2/m with a = 14.400(3) Å, b = 9.3894(18) Å, c = 8.6926(17) Å, β = 123.499(2)°, V = 980.1(3) Å3, z = 2. The Cd coordinates to four nitrogen atoms from four different BIM and two nitrates to form a slightly distorted octahedral geometry. The BIM ligands bridge to form a 1-D infinite double-bridged chain structure with 16-membered M2L2 macrometallacyclic structural units.  相似文献   

2.
The products of the reaction between the electrophilic alkenylxenonium cation [1-Xe+–C6F9] and the halide anions I?, Br?, Cl? and F? depend on the hardness of the halide anion. With the soft halides I? and Br? Xe(II) is formally displaced by halogen as well in basic MeCN as in superacidic (AHF1), whereas with hard fluoride and chloride no reaction takes place in AHF. In MeCN F? initiates the formation of alkenyl radicals, which abstract hydrogen from the solvent, whereas Cl? exhibits borderline character: RH and RCl formation. Possible reaction paths are discussed. The reactivity of the arylxenonium cation [C6F5Xe]+ in AHF toward halide ions is reported and the relative electrophilicity of the cations [C6F5Xe]+ and [1-Xe+–C6F9] is determined by the competitive reaction with Cl?. In addition the synthesis of cyclohexene 1-CF3–C6F9 from C6F5CF3 and XeF2 is performed and its electrophilicity is compared with that of the aromatic compound C6F5CF3.  相似文献   

3.
赵雪梅  唐良富  杨攀  王积涛 《中国化学》2003,21(11):1447-1450
IntroductionPoly(pyrazol 1 yl)alkanes,especiallybis(pyrazol 1 yl)alkanes ,havebeenoneofpopularpolydentatenitrogendonorligandssinceTrofimenko’sfirstreport1andJulia’slatermodification .2 Ithasbeenfoundthatthecoordinationbehavioroftheseligandscaneasilybeadjustedbychang ingtheelectronicandstericcharacteristicsofsubstituentsonthepyrazolering .Recentinvestigationshavealsoshownthatthecentralcarbonatomoftheseligandscanbemodifiedbythevariousfunctionalgroupstoformversatileheteroscorpionateligands ,wh…  相似文献   

4.
The reaction of [Cu(NCMe)4](BF4) with equimolar amounts of the tris(substituted-pyrazolyl)methane ligand HCPz3 or HC(3,5-Me2Pz)3 yields the respective salts [Cu(HCPz3)(NCMe)](BF4) (1a) or [Cu(HC(3,5-Me2Pz)3)(NCMe)](BF4) (1). The acetonitrile ligand of 1 can be replaced by prazine, 4,4′-dipyridine or 1,4-diisocyanobenzene to yield related mononuclear complexes [Cu(HC(3,5-Me2Pz)3)(pyrazine)](BF4) (2), [Cu(HC(3,5-Me2Pz)3)(4,4′-bipyridine)] (BF4) (3) or [Cu(HC(3,5-Me2Pz)3)(1,4- CNC6H4NC)](BF4) (7), respectively. A series of binuclear copper(I) complexes {[Cu(HC(3,5-Me2Pz)3)]2(μ -BL)}(BF4)2 (4, BL = pyrazine; 5, BL = 4,4′-dipyridine; 8, BL = 1,4-diisocyanobenzene) were prepared by treating equal molar ratio of 1 with related mononuclear complexes 2, 3 and 7. In addition, binuclear copper(I) complexes were also prepared from treatment of 2 equiv of 1 with the related bridge ligand. Both of 4 and 5 reformed mononuclear starting complex 1 in acetonitrile solution. However, the more robust complex 8 was stable in acetonitrile solutions. The structure of complexes 1a, 4, 5, and 7 were confirmed by X-ray crystallography. The redox properties of 4 and 8 were examined by cyclic voltammetry and exhibited two quasi-reversible waves suggesting that no significant structural reorganization occurs during the redox process on the electrochemical time scale.  相似文献   

5.
An efficient synthesis of 3,3-di(1H-indol-3-yl)indolin-2-ones and 2,2-di(1H-indol-3-yl)-2H-acenaphthen-1-ones via a reaction of various isatins or acenaphthenequinone with indoles in the presence of p-methylbenzene sulfonic acid (p-TSA) in CH2Cl2 at room temperature is described. The advantages of this method include good reaction yield, simple workup procedure, and mild reaction condition.  相似文献   

6.
Ni(II) di(pentyl)dithiocarbamates of composition [Ni(Pe2dtc)2], [NiX(Pe2dtc)(PPh3)] (X = Cl, Br, I, NCS), [Ni(NCS)(Pe2dtc)(PBut3)], [Ni(Pe2dtc)(PPh3)2]ClO4 and [Ni(Pe2dtc)(PPh3)2]PF6 (Pe2dtc = di(pentyl)dithio-carbamate, PPh3 = triphenylphosphine, PBut3 = tributylphosphine) have been synthesized. The complexes have been characterized by the usual methods. X-ray structure analyses confirmed the nature of [NiI(Pe2dtc)(PPh3)] and [Ni(Pe2dtc)(PPh3)2]ClO4 complexes.  相似文献   

7.
The reaction of 2-(1H-imidazol-1-yl)acetic acid with (Ph3Sn)2O or Cy3SnOH (Cy?=?cyclohexyl) yields triphenyltin 2-(1H-imidazol-1-yl)acetate (1) and tricyclohexyltin 2-(1H-imidazol-1-yl)acetate (2), respectively. 2-(1H-imidazol-1-yl)acetates in these two complexes show remarkably different coordination modes. Complex 1 forms a polymeric chain structure through intermolecular Sn–N interactions, while 2 displays a 28-membered macrocyclic tetranuclear structure by the assembly of Sn–N coordination bonds.  相似文献   

8.
New multidentate heteroscorpionate ligands, N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,5-Me2Pz)2 (1), N-phenyl-2,2-bis(3,4,5-trimethylpyrazol-1-yl)thioacetamide PhHNCSCH(3,4,5-Me3Pz)2 (2), and ethyl 2,2-bis(3,5-dimethylpyrazol-1-yl)dithioacetate EtSCSCH(3,5-Me2Pz)2 (8), have been synthesized and their coordination chemistry studied. These heteroscorpionate ligands can act as monodentate, bidentate, or tridentate ligands, depending on the coordinate properties of different metals. Reaction of W(CO)6 with 1 or 2 under UV irradiation yields monosubstituted carbonyl tungsten complexes W(CO)5L (L = 1 or 2), in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide acts as a monodentate ligand by the s-coordination to the tungsten atom. In addition, these monosubstituted tungsten complexes have also been obtained by heating ligand 1 or 2 with W(CO)5THF in THF. While similar reaction of Fe(CO)5 with 1, 2, or 8 under UV irradiation results in tricarbonyl iron complexes PhHNCSCH(3,5-Me2Pz)2Fe(CO)3 (5), PhHNCSCH(3,4,5-Me3Pz)2Fe(CO)3 (6), and EtSCSCH(3,5-Me2Pz)2Fe(CO)3 (9), respectively, in which N-phenyl-2,2-bis(pyrazol-1-yl)thioacetamide or ethyl 2,2-bis(pyrazol-1-yl)dithioacetate acts as a bidentate ligand through one pyrazolyl nitrogen atom and the CS π-bond in an η2-C,S fashion side-on bonded to the iron atom to adopt a neutral bidentate κ2-(π,N) coordination mode. Treatment of the lithium salt of 1 with Co(ClO4)2 · 6H2O gives complex [PhNCSCH(3,5-Me2Pz)2]2Co(ClO4) with the oxidation of cobalt(II) to cobalt(III), in which N-phenyl-2,2-bis(3,5-dimethylpyrazol-1-yl)thioacetamide acts as a tridentate monoanionic κ3-(N,N,S) chelating ligand by two pyrazolyl nitrogen atoms and the sulfur atom of the enolized thiolate anion.  相似文献   

9.
The synthesis, structural characterization, and coordination behavior of ditopic ortho-hydroquinone-based bis(pyrazol-1-yl)methane ligands (ortho-(OH)2C6H3-4-CHpz2, ortho-(OH)2C6H3-4-CH(3-Phpz)2, and ortho-(OH)2C6H3-4-CH(3-tBupz)2) with pyrazole, 3-phenylpyrazole, and 3-tert-butylpyrazole as donors are described. The reaction of a soluble PdCl2-source with ortho-(OH)2C6H3-4-CHpz2 in acetonitrile yielded the related square-planar N,N-coordinated Pd(II) dichloride complex, whereas treatment of ortho-(OH)2C6H3-4-CH(3-Phpz)2 or ortho-(OH)2C6H3-4-CH(3-tBupz)2 with PdCl2 in acetonitrile resulted in degradation of these ligands. The Pd(II) complexes trans-(3-PhpzH)2PdCl2 and trans-(3-tBupzH)2PdCl2 were isolated and fully characterized including X-ray diffraction analyses.  相似文献   

10.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5 (L=L1或L3),LW(CO)4 (L=L1,L2或L3)和LW(CO)3 (L=L1或L2).核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式.在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N']双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N']三齿螯合配体的作用.  相似文献   

11.
研究了(氮甲基咪唑-2-基)双(3,5-二甲基吡唑)甲烷(L1),2-吡啶基双(3,5-二甲基吡唑)甲烷(L2)及4-吡啶基双(3,5-二甲基吡唑)甲烷(L3)与羰基钨的反应,合成了一系列以单齿,双齿及三齿氮配位的羰基金属衍生物LW(CO)5(L=L1或L3),LW(CO)4(L=L1,L2或L3)和LW(CO)3(L=L1或L2)。核磁,红外及X-射线单晶衍射分析表明这3种配体表现出了可变的配位方式。在LW(CO)5中,当配体为L1时,其倾向于通过咪唑氮与金属配位,而为L3则倾向于利用吡啶氮与金属作用;在LW(CO)4中,配体L1表现为通过咪唑氮和吡唑氮原子配位的[N,N′]双齿配体,而L2和L3表现为通过吡唑氮原子配位的[N,N]双齿配体;在LW(CO)3中,L1和L2起着[N,N,N′]三齿螯合配体的作用。  相似文献   

12.
It has been shown that the nature of the substituent and its position in the quinoline ring markedly affects the antitumor activity and toxicity of di(8-quinolyl) disulfides. The greatest cytotoxicity in the series of methyl derivatives was shown by the 7-, 6-, and 3-isomers towards HT-1080 (human fibrosarcoma) and MG-22A (mouse hepatoma) tumor cells while the 2-methyl derivatives generally have no effect on these cells. High cytotoxicity was also shown (LC50 <1 μg/ml) by other 7-substituted compounds (Cl, PhO, PhS) but they also appear to be highly toxic towards normal NIH 3Y3 mouse embryonic fibroblasts. A similar trend was observed in the series of 5-substituted compounds (NH2, Cl, OMe, NO2) which were highly active towards tumor cells but were toxic to normal cells. The best selectivity was found for the 6-substituted quinolines, the 6-methoxy derivative at low concentration brought about the death of tumor cells but appeared much less toxic towards normal fibroblasts (LC50 100 μg/ml with a corresponding LD50 of 874 mg/kg ). __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 750–754, May 2007.  相似文献   

13.
Polysulfonyl Amines. LXXII. Triphenylcarbenium and Triphenylphosphonium Di(fluorosulfonyl)amides: Two Crystal Structures with Ordered (FSO2)2N? Sites Treatment of HN(SO2F)2 in CH2Cl2 with Ph3P, Ph3PO or collidine (=B) affords the compounds Ph3PH[(FSO2)2N]? ( 3 ), Ph3PO · HN(SO2F)2, and BH[(FSO2)2N]? ( 7 ). The carbenium salt Ph3C[(FSO2)2N]? ( 5 ), obtained by metathesis of Ph3CBr with [(C6H6)AgN(SO2F)2] in CH2Cl2, crystallizes from chloroform/petroleum ether as a monosolvate Ph3C[(FSO2)2N]? · CHCl3 ( 6 ). In presence of a sterically hindered base, viz. collidine, 5 is a suitable reagent for the tritylation of molecules containing weakly activated H atoms (e. g.: MeCN → Ph3CCH2CN, acetone → tritylacetone; co-product: 7 ). The crystal structures of the ionic solids 3 (monoclinic, space group P21/n) and 6 (monoclinic, P21/c) were determined by X-ray diffraction at ?130°C; the structure refinements were not impaired by the notorious tendency of the (FSO2)2N moiety towards crystallographic disorder. As in the known structure of the tetraphenylarsonium salt, the anion of 3 and 6 adopts a staggered conformation of approximately C2 symmetry (averages of all values: S? N? S 121.4°, N? S 156.2, S? O 141.6, S? F 156.6 pm). The crystal packing of 6 displays a three-centre C? H(…?O)2 hydrogen bond between the CHCl3 molecule and two oxygen atoms of a single anion, resulting in a six-membered ring [R12(6) pattern; H …? O 234 and 262 pm]. The crystal of 3 contains one-dimensional arrays of alternating cations and anions connected by a three-centre P? H(…?O)2 bond [C(6) pattern; H …? O 237 and 254 pm]. The Ph3C cation of 6 is propeller-shaped, with three coplanar central bonds (mean C? C 144.5 pm) and interplanar angles of 52.7, 56.4 and 60.1° between the phenyl groups.  相似文献   

14.
Three metal-organic frameworks, [Eu(C10H6N3O5)3(H2O)2]?·?H2O (1), [Tb(C10H6N3O5)3(H2O)2]?·?H2O (2), and [Cd(C10H6N3O5)2Cl2] (3) based on T-shaped tripodal ligands 3-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine-1-oxide and 4-(4,5-dicarboxy-1H-imidazol-2-yl)pyridine-1-oxide (H3DCImPyO), have been synthesized by the hydrothermal method and characterized by elemental analysis, IR, and single-crystal X-ray structure analysis. The diverse coordination modes of H3DCImPyO ligands have afforded the three compounds. Complexes 1 and 2 are isomers and the Ln (Ln?=?Eu or Tb) atoms have coordination number eight with a distorted square prism geometry. The partly deprotonated H2DCImPyO? ligands display three different coordination modes to link Ln (Ln?=?Tb or Eu) into 1-D double chains. In 3, Cd(II) lies on an inversion center and displays a slightly distorted octahedral coordination. All three compounds exhibit strong fluorescent emissions in the solid state at room temperature.  相似文献   

15.
The reaction of copper dichloride dihydrate and bis(3,5-dimethylpyrazol-1-yl)methane affords [Cu{H2C(3,5-Me2pz)2}2Cl]Cl · 3H2O. The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The electronic structure of the [Cu{H2C(3,5-Me2pz)2}2Cl]+ cation has been calculated with the density functional theory (DFT) method. The spin-allowed doublet–doublet electronic transitions of [Cu{H2C(3,5-Me2pz)2}2Cl]+ have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis.  相似文献   

16.
Three manganese coordination polymers [Mn(bimb)2(NCS)2] n (1), [Mn(bimb)2(dca)2] n (2) and [Mn(bimb)2(N3)2] n (3) (bimb?=?1,4-bis(imidazol-1-yl)butane, dca?=?dicyanamide) were synthesized and characterized by X-ray crystallography, IR and thermogravimetric analysis. In 1 and 2, each Mn(II) links two Mn(II) atoms by double bimb ligands and extends to form a one-dimensional double chain structure containing the Mn2(bimb)2 22-member metallocycle. 3 constructs a two-dimensional (4,4) network linked by bimb bridges.  相似文献   

17.
N-Aryl-N-(1H-tetrazol-5-yl)benzenesulfonamides were synthesized via an eco-friendly protocol using ZnBr2-catalyzed [2 + 3] cycloaddition reaction of N-cyano-N-arylbenzenesulfonamides and sodium azide under reflux conditions in water. The products were obtained in excellent yields via an easy work-up procedure.  相似文献   

18.
The modification of bis(pyrazol-1-yl)methanes by organotin halide on the methine carbon atom has been successfully carried out, and their related reactions have also been studied. Bis(3,5-dimethylpyrazol-1-yl)(iododiphenylstannyl)methane [Ph2ISnCH(3,5-Me2Pz)2] can be obtained by the selective cleavage of the Sn-Csp2 bond in bis(3,5-dimethylpyrazol-1-yl)triphenylstannylmethane with I2 in a 1:1 molar ratio, while {di(tert-butyl)chlorostannyl}bis(3,5-dimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,5-Me2Pz)2] and {di(tert-butyl)chlorostannyl}bis(3,4,5-trimethylpyrazol-1-yl)methane [(t-Bu)2ClSnCH(3,4,5-Me3Pz)2] are easily prepared by the reaction of the bis(3,5-dimethylpyrazol-1-yl)methide or bis(3,4,5-trimethylpyrazol-1-yl)methide anion with di(tert-butyl)tin dichloride. The molecular structure of [(t-Bu)2ClSnCH(3,5-Me2Pz)2] determined by X-ray structure analysis indicates that bis(3,5-dimethylpyrazol-1-yl)methide acts as a bidentate monoanionic κ2-[C,N] chelating ligand. Reaction of these bis(pyrazol-1-yl)methanes functionalized by organotin halide with W(CO)5THF results in the oxidative addition of the relative electrophilic Sn-X (X = Cl or I) bond instead of the Sn-Csp3 bond to the tungsten(0) atom, yielding new metal-metal bonded complexes R2SnCHPz2W(CO)3X (R = Ph or t-Bu, Pz represents substituted pyrazol-1-yl). Furthermore, treatment of the oxidative addition product (t-Bu)2SnCH(3,5-Me2Pz)2W(CO)3Cl with n-BuLi results in known complex CH2(3,5-Me2Pz)2W(CO)4 with the loss of the organotin fragment. In addition, reaction of Ph2ISnCH(3,5-Me2Pz)2 with 2-PySNa (Py = pyridyl) leads to the replacement of iodide by 2-PyS anion to give Ph2(2-PyS)SnCH(3,5-Me2Pz)2, which subsequently reacts with W(CO)5THF to result in the decomposition of this ligand, also yielding the known bis(3,5-dimethylpyrazol-1-yl)methane derivative of CH2(3,5-Me2Pz)2W(CO)4.  相似文献   

19.
Two novel copper(II) complexes incorporating bis(pyrazol-1-yl)methane ligand (bpzm) have been synthesized. The compounds [CuCl(bpzm)2(H2O)]Cl·H2O (1) and [Cu(N3)2(bpzm)]n (2) have been studied by IR, UV-Vis spectroscopy and X-ray crystallography. The experimental studies on the compounds 1 and 2 have been accompanied computationally by the density functional theory (DFT) calculations.  相似文献   

20.
The complex [MnIV(napbh)2] (napbhH2 = N-(2-hydroxynaphthalen-1-yl)methylenebenzoylhydrazide) reacts with activated ruthenium(III) chloride in methanol in 1 : 1.2 molar ratio under reflux, giving heterobimetallic complexes, [MnIV(napbh)2RuIIICl3(H2O)] · [RuIII(napbhH)Cl2(H2O)] reacts with Mn(OAc)2·4H2O in methanol in 1 : 1.2 molar ratio under reflux to give [RuIII(napbhH)Cl2(H2O)MnII(OAc)2]. Replacement of aquo in these heterobimetallic complexes has been observed when the reactions are carried out in the presence of pyridine (py), 3-picoline (3-pic), or 4-picoline (4-pic). The molar conductances for these complexes in DMF indicates 1 : 1 electrolytes. Magnetic moment values suggest that these heterobimetallic complexes contain MnIV and RuIII or RuIII and MnII in the same structural unit. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that the napbhH2 ligand coordinates in its enol form to MnIV and bridges to RuIII and in the keto form to RuIII and bridging to MnII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号