首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
运用电化学循环伏安(CV)和原位红外反射光谱(in situ FTIRS)研究了中性介质中L-丝氨酸在Pt电极上的解离吸附和氧化过程. 结果表明, 在中性溶液中, 以两性离子形式存在的丝氨酸可以在很低的电位下(-0.6 V, vs. SCE)在Pt电极表面发生解离吸附, 生成强吸物种一氧化碳(COL)、(COB)和氰负离子(CN-). 研究结果还表明, 当电位低于0.7 V(vs. SCE)时, CN-能稳定存在于电极表面, 抑制丝氨酸的进一步反应. 在更高电位时则主要为丝氨酸分子的氧化过程.  相似文献   

2.
The electrochemical behavior of adsorbed NO molecules on a Pt(100) electrode has been studied in perchloric acid solutions by means of cyclic voltammetry. According to the literature data, a saturated NO adlayer with a coverage of ~0.5 monolayers (MLs) is formed under open circuit conditions in an acidic nitrite solution as a result of a disproportionation reaction. The saturated adlayer is stable in the potential range of 0.4–0.9 V vs. a reversible hydrogen electrode in 0.1 M HClO4. NO molecules are oxidized at 0.9–1.1 V with the formation of adsorbed nitrite anions, and they can be reduced to ammonia at potentials less than 0.4 V. In this paper it has been shown that the adlayer stability depends on the surface coverage and extent of ordering. An unsaturated NO adlayer demonstrates NO ? NH3 redox transformations at 0.5–0.8 V.  相似文献   

3.
(S)-Cysteine has been deposited on a Cu110 surface from sublimation of a crystalline phase. The surface was characterized by Fourier transform reflection absorption infrared spectroscopy (FT-RAIRS) during exposure and compared to the same copper surface after immersion into cysteine solutions at various pH values. X-ray photoelectron spectroscopy (XPS) measurements provided a chemical characterization of the surface at certain stages. The combination of these two techniques highlighted the importance of the cysteine "source" for the adsorbed form of the molecules and the mode of interaction. The zwitterionic amino acid was found to be predominant after adsorption at pH values close to the isoelectric point (IEP) of the molecule but also when the layer was formed in the vapor phase. This state was very sensitive to the atmosphere, contained an excess of hydroxyls, and/or underwent reduction into the anionic form when in contact with water or air. Weakly bound cysteine or cystine molecules, formed in the adsorbed phase, were considered to explain the average thickness of the adsorbed layer that was close to 20 A. As expected, immersion in very acidic or very basic solutions led to cationic and anionic forms, respectively.  相似文献   

4.
Brilliant blue FCF‐modified glassy carbon electrodes have been prepared by cycling the Nafion (or poly(diallyldimethylammonium chloride) (PDDAC)) coated electrodes repeatedly 15 cycles in brilliant blue FCF (BB FCF) dye solution. The BB FCF molecules are incorporated into Nafion coating by cycling the film‐covered electrode between +0.3 to 1.2 V (vs. Ag/AgCl) in pH 1.5 BB FCF solution while PDDAC‐coated electrode cycled between 0 to ?1.0 V (vs. Ag/AgCl) in pH 6.5 BB FCF solution to immobilize the dye. Electrostatic interaction between dye molecule and PDDAC was predominant in PDDAC coating whereas immobilization of dye in Nafion film attributed to the combined effect of electrostatic and hydrophobic interactions. The voltammetric features of BB FCF‐modified electrodes resemble that of surface‐confined redox couples. The peak potentials of BB FCF‐incorporated PDDAC‐coated electrode were shifted to more positive potential region with decreasing pH of contacting solution. BB FCF‐modified electrodes showed electrocatalytic activity towards reduction of oxygen and oxidation of L ‐cysteine with significant decease of overvoltage compared to unmodified electrode. The BB FCF‐modified Nafion‐coated electrode was tested for its analytical applications toward determination of L ‐cysteine. The linear range of calibration plot at BB FCF‐modified Nafion‐coated electrode is 10 to 100 μM, which coincides with L ‐cysteine levels in biological fluids. Sensitivity and detection limit of the electrode are 111 nA μM?1 and 0.5 μM, respectively.  相似文献   

5.
The adsorption behavior of pyridine on a smooth polycrystalline gold electrode surface was investigated over a wide wavenumber region (2000–500 cm−1) by in situ infrared reflection absorption spectroscopy (IRAS). The reversible adsorption/desorption of pyridine was observed upon the change in applied electrode potential, and the adsorption state at positive potentials was found to depend strongly on the kind of halide ion used as a supporting electrolyte. Symmetry analysis of absorption bands observed revealed that pyridine molecules adsorb with the molecular axis (C2 axis) perpendicular to the electrode surface (vertical configuration) at positive potentials in 0.5 M KF, KCl and KBr solutions. A band due to the out-of-plane bending mode of the adsorbed pyridine molecule was observed at potentials more negative than ca. 0 V for 0.5 M KF solution containing 100 mM pyridine. We concluded that even in the 100 mM pyridine solution, adsorbed pyridine forms a monolayer and that the molecules reorient from a flat (parallel) to the vertical configuration as the potential becomes less negative. No bands due to adsorbed pyridine were detected for 0.5 M KI solution. The amount of adsorbed pyridine was found to depend strongly on the strength of specific adsorption of halide ions.  相似文献   

6.
《Vibrational Spectroscopy》2011,55(2):148-154
The adsorption of 4-aminopyridine (4-AP) on Co and Ag electrodes in acid or alkaline solutions of KCl and KI electrolyte salts were monitored by the Surface-enhanced Raman Spectroscopy (SERS) technique. The SERS intensity for the Ag electrode was in 2 orders of magnitude higher than for the Co electrode, due to the enhancement of the Raman cross-section on Ag by the surface-plasmon excitation. In acidic chloride medium (pH 4), the SERS results for Ag electrodes indicate that the protonated form of 4-AP (4-APH+) adsorbs in the potential range of −0.1 to −0.6 V (Ag|AgCl|KCl sat) through hydrogen-bonding between 4-APH+ and Cl adsorbed on the electrode surface; at more negative potentials the neutral form 4-AP is the predominant adsorbed species. For Co electrode in the same medium, only bands due to neutral 4-AP were observed in the spectra at −0.8 and −0.9 V. For more negative potentials bands assigned to both 4-AP and 4-AP surface complex are observed, with the lasts being enhanced, as the potentials are turned more negative. In alkaline chloride medium (pH 13), for less negative potentials the bands assigned to free 4-AP were observed in the spectra of both Ag and Co surfaces. For more negative potentials, only bands assigned to the 4-AP surface complex were observed. For 0.1 mol L−1 KI acidic or alkaline solutions, bands assigned to 4-AP and 4-APH+ were observed in a wider potential range than in chloride solutions. An adsorption scheme of 4-AP on Ag and Co is proposed for acidic and alkaline solutions.  相似文献   

7.
This is the first report of in situ SER spectra of chemical species adsorbed on a Ag/room temperature ionic liquid (RTIL) interface. We have investigated the dependence of the SERS intensity of the RTIL derived from 1-n-butyl-3-methylimidazolium hexafluorophosfate (BMIPF6) adsorbed on a silver electrode. It has been shown that the BMI+ adsorbs on the silver electrode for potentials more negative than -0.4 V vs a Pt quasireference electrode (PQRE). In the -0.4 to -1.0 V potential range the SER spectra are similar to the Raman spectrum of the RTIL BMIPF6. At potentials more negative than -1.0 V some imidazolium ring vibrational modes and N-CH3 vibrations are enhanced, suggesting that the imidazolium ring is parallel to the surface and for potentials <-2.8 V the BMI+ is reduced to the BMI carbene. The potential dependence of the SERS intensities of Py adsorbed on a silver electrode in BMIPF6 has also been investigated. The results have shown that at potentials less negative than -0.8 V (vs PQRE) Py adsorbs at an end-on configuration forming an Ag-N bond. In the -0.9 to -1.4 V potential range Py molecules lie flat on the electrode surface and at potentials <-1.4 V Py is replaced by the BMI+. The electrochemical and SERS results have shown that Py has the effect of changing the oxidation of silver in that medium as well as the reduction of BMI+ to the BMI carbene. In the presence of Py the BMI+ reduction is observed at potentials near -2.4 V. The Ag electrode has presented SERS activity from 0.0 to -3.0 V.  相似文献   

8.
The interfacial properties of the system titanium(IV) oxide/poly(4-styrenesulfonate) (PSS) over a broad pH region in the presence of different alkali metal chlorides of different concentrations were investigated by means of electrokinetic, adsorption and surface potential measurements. Adsorption and electrokinetic data were obtained with colloid TiO2 particles, while surface potential data were obtained using a single crystal rutile electrode with the 001 plane exposed to the liquid medium. The electrokinetic and surface potentials of TiO2 were measured in the absence and presence of PSS. Since the presence of PSS did not significantly affect surface potentials, it was concluded that negative PSS molecules adsorbed at the surface by forming an outer-sphere surface complex rather than inner-sphere complex. The adsorption decreases significantly with pH, while the electrokinetic potential in the presence of PSS is negative in the whole investigated pH region. Amount of adsorbed PSS molecules is limited by the electrostatic repulsion which suppresses further adsorption, i.e. above critical potential of ?50 millivolts. In the acidic region, where the surface is originally positively charged the amount of adsorbed PSS molecules is high since negative PSS molecules should at first compensate original positive charge and in the second step reverse the charge to reach the critical potential. In the basic region the surface charge is already negative so that small amount of adsorbed PSS molecules creates critical potential that prevents further adsorption.  相似文献   

9.
High-resolution scanning tunneling microscopy has been used to examine the adsorbate structures formed when a racemic mixture of (9R,10R)-9,10-diiodooctadecan-1-ol and (9S,10S)-9,10-diiodooctadecan-1-ol is adsorbed at the basal plane of highly ordered pyrolytic graphite. The herringbone structure characteristic of the adsorption of long-chain molecules on graphite is observed. Close examination of the micrographs indicates a unique structure in which the chiral molecules adsorb in pairs, with one enantiomer filling half of the unit cell, and the other enantiomer filling the other half. Instead of forming separate chiral domains, as is sometimes observed when a racemic mixture adsorbs on an achiral surface, chiral pairs are formed and the pairs form an ordered monolayer, exposing opposite faces of the same molecule. An achiral racemic mixture is observed to form a chiral structure on an achiral surface in the regions of the surface examined here.  相似文献   

10.
利用表面增强拉曼光谱(SERS)技术研究了在粗糙化银电极表面吸附的异亮氨酸自组装单层膜结构及其表面性质随溶液酸碱性和电极电位改变的特征.研究结果表明溶液pH值的变化并没有显著改变异亮氨酸分子在银电极表面以去质子化羧基吸附为主的特征.借助于高氯酸根离子这一SERS光谱探针,对异亮氨酸单分子膜的表面酸碱性质进行了表征和分析.而就电位改变对该单分子膜结构的影响而言,在所研究的电位范围内,单分子膜中的异亮氨酸分子是通过去质子化羧基与氨基两个位点而吸附的,且吸附作用随电位负移而呈现有规律的变化.  相似文献   

11.
We have studied the vapor-phase deposition of L-cysteine on the Au(110) surface by means of synchrotron-based techniques. Relying on a comparison with previous X-ray photoemission analysis, we have assigned the fine structure of the C K-shell X-ray absorption spectra to the nonequivalent carbon bonds within the molecule. In particular, the C1s --> sigma* transition, where the sigma* state is mainly localized on the C-S bond, is shifted well below the ionization threshold, at approximately -5 eV from the characteristic pi* transition line related to carboxylic group. From the polarization dependence of the absorption spectra in the monolayer coverage range, the molecules are found to lay flat on the surface with both the C-S bond and the carboxylic group almost parallel to the surface. We performed in situ complementary surface X-ray diffraction, SXRD, measurements to probe the rearrangement of the Au atoms beneath the L-cysteine molecules. Since the early stage of deposition, L-cysteine domains are formed which display an intermediate fourfold symmetry along [001]. The self-assembly of molecules into paired rows, extending along the [1(-)10] direction, is fully compatible with our observations, as has been reported for the case of D-cysteine molecules grown on Au(110) [Kühnle, A. et al. Phys. Rev. Lett. 2004, 93, 086101.]  相似文献   

12.
次亚磷酸根离子在多晶铂电极上氧化的原位红外光谱研究;电氧化;电催化;SNIFTIRS  相似文献   

13.
The structure of a bisterpyridine-like oligopyridine (abbreviated as 2,4'-BTP) monolayer on Au(111), adsorbed from an acetone solution, was studied by in situ scanning tunneling microscopy and cyclic voltammetry in aqueous 0.1 M H2SO4. Short-range ordered adsorption with an average distance between the individual molecules of about 2 nm was observed only at electrode potentials positive of +0.4 V vs SCE, whereas at more negative potentials, no order could be found. With the help of Cu underpotential deposition, a potential-induced, fast, and fully reversible structure transition within the organic monolayer was identified at about +0.4 V vs SCE. At negative potentials the molecules apparently cluster together and consequently current-potential curves resemble those for a bare gold surface, whereas for E>+0.4 V vs SCE the molecules are spread over the entire surface in a hexagonal, close-packed fashion. This may have interesting consequences for switching between different template structures.  相似文献   

14.
The interaction between bacterial cells of Pseudomonas fluorescens (ATCC 17552) and gold electrodes was analyzed by cyclic voltammetry (CV) and attenuated total reflection-surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The voltammetric evaluation of cell adsorption showed a decrease in the double-layer capacitance of polyoriented single-crystal gold electrodes with cell adhesion. As followed by IR spectroscopy in the ATR configuration, the adsorption of bacterial cells onto thin-film gold electrodes was mainly indicated by the increase in intensity with time of amide I and amide II protein-related bands at 1664 and 1549 cm(-1), respectively. Bands at 1448 and 2900 cm(-1) corresponding to the scissoring and the stretching bands of CH2 were also detected, together with a minor peak at 1407 cm(-1) due to the vs COO- stretching. Weak signals at 1237 cm(-1) were due to amide III, and a broad band between 1100 and 1200 cm(-1) indicated the presence of alcohol groups. Bacteria were found to displace water molecules and anions coadsorbed on the surface in order to interact with the electrode intimately. This fact was evidenced in the SEIRAS spectra by the negative features appearing at 3450 and 3575 cm-1, corresponding to interfacial water directly interacting with the electrode and water associated with chloride ions adsorbed on the electrode, respectively. Experiments in deuterated water confirmed these assignments and allowed a better estimation of amide absorption bands. In CV experiments, an oxidation process was observed at potentials higher than 0.4 V that was dependent on the exposure time of electrodes in concentrated bacterial suspensions. Adsorbed bacterial cells were found to get closer to the gold surface during oxidation, as indicated by the concomitant increment in the main IR bacterial signals including amide I, a sharp band at 1240 cm(-1), and a broad one at 1120 cm(-1) related to phosphate groups in the bacterial membranes. It is proposed to be due to the oxidation of lipopolysaccharides on the outermost bacterial surface.  相似文献   

15.
The voltammetric behavior of L-cysteine at a silver electrode is described. L-Cysteine can be anodically accumulated at a silver electrode surface as a sparingly soluble silver salt; at more negative potentials, the insoluble compound is stripped cathodically yielding a small current peak at about -1.10 V (vs. SCE). In the presence of cetyl pyridine bromide (CPB), the stripping peak shifts slightly to a more negative potential, and the peak height increases significantly. Thus, the peak becomes more useful for the determination of L-cysteine. In contrast to other surfactants, CPB can improve the accumulation and stripping of L-cysteine obviously. The voltammetric behavior of cysteamine, 3-mercaptopropionic acid and homocysteine is discussed as well.  相似文献   

16.
The voltammetric behavior of L-cysteine at a silver electrode is described. L-Cysteine can be anodically accumulated at a silver electrode surface as a sparingly soluble silver salt; at more negative potentials, the insoluble compound is stripped cathodically yielding a small current peak at about –1.10 V (vs. SCE). In the presence of cetyl pyridine bromide (CPB), the stripping peak shifts slightly to a more negative potential, and the peak height increases significantly. Thus, the peak becomes more useful for the determination of L-cysteine. In contrast to other surfactants, CPB can improve the accumulation and stripping of L-cysteine obviously. The voltammetric behavior of cysteamine, 3-mercaptopropionic acid and homocysteine is discussed as well.  相似文献   

17.
A single‐wall carbon nanotube functionalized by carboxylic groups (SWNT‐CA) was found to be adsorbed on an indium tin oxide (ITO) electrode by chemical interaction between carboxylic groups and the ITO surface. The adsorption experiments indicated that the narrow pH conditions (around pH 3.0) exist for its adsorption which is restricted by preparation of stable fluid dispersion (favorable at higher pH) and by the chemical interaction (favorable at lower pH). Atomic force microscopic (AFM) measurements suggest that fragmented SWNT‐CA are adsorbed, primarily lying on the surface. Electrochemical impedance analysis indicated that an electrochemical double layer capacitance of the SWNT‐CA/ITO electrode is considerably higher than that for the ITO electrode, suggesting that the interfacial area between the electrode surface and the electrolyte solution is enlarged by the SWNT‐CA layer. Pt particles were deposited as a catalyst on the bare ITO and SWNT‐CA‐coated ITO (SWNT‐CA/ITO) electrodes to give respective Pt‐modified electrodes (denoted as a Pt/ITO electrode and a Pt/SWNT‐CA/ITO electrode, respectively). The cathodic current for the Pt/SWNT‐CA/ITO electrode was 1.7 times higher than that for the Pt/ITO electrode at 0.0 V, showing that the Pt/SWNT‐CA/ITO electrode works more efficiently for O2 reduction at 0.0 V due to the SWNT‐CA layer. The enhancement by the SWNT‐CA layer is also effective for electrocatalytic proton reduction. It could be ascribable to the enlarged interfacial area between the electrode surface and the electrolyte solution.  相似文献   

18.
The study of heterodentate molecules adsorbed on metal electrodes provides an opportunity to expand the functionality of modified surfaces while offering insights into the surface and intramolecular electronic interactions of organic adsorbates. The adsorption of 2-(2'-thienyl)pyridine, a molecule containing both pyridine and thiophene moieties, on a Au(111) electrode is reported. Adsorption was characterized by electrochemistry in neutral and basic aqueous electrolyte and was compared to that of pyridine. The aqueous electrochemistry of thiophene on Au(111) was also characterized for comparison purposes. At negative potentials, in the presence of 2-(2'-thienyl)pyridine, a diffuse, pi-bonded monolayer was formed, and a phase transition to a close-packed N- and/or S-bonded configuration was observed near -0.4 V in a 1 mM solution of adsorbate, similar to that seen in pyridine on Au(111). The thiophene-like oxidative dimerization of the molecule was confirmed at positive potentials using in situ fluorescence microscopy by comparison with the spectrum of the chemically synthesized dimer.  相似文献   

19.
We report on a high-resolution X-ray photoemission spectroscopy study on molecular-thick layers of L-cysteine deposited under ultrahigh vacuum conditions on Au(110). The analysis of core level shifts allowed us to distinguish unambiguously the states of the first-layer molecules from those of molecules belonging to the second layer. The first-layer molecules strongly interact with the metal through their sulfur headgroup. The multipeaked structure of the N 1s, O 1s, and C 1s core levels is interpreted in terms of different molecular moieties. The neutral acidic fraction (HSCH2CH(NH2)COOH) is abundant at low coverage likely associated with isolated molecules or dimers. The zwitterionic phase (HSCH2CH(NH3+)COO-) is largely dominant as the coverage approaches the monolayer limit and is related to the formation of ordered self-assembled molecular structures indicated by electron diffraction patterns. The occurrence of a small amount of cationic molecules (HSCH2CH(NH3+)COOH) is also discussed. The second-layer molecules mainly display zwitterionic character and are weakly adsorbed. Mild annealing up to 100 degrees C leads to the desorption of the second-layer molecules leaving electronic states of the first layer unaltered.  相似文献   

20.
A sensitive and selective electrochemical method for the determination of L-cysteine was developed using a modified carbon paste electrode (MCPE) with quinizarine. Cyclic voltammetry was used to investigate the redox properties of this modified electrode at various solution pH values and at various scan rates. The apparent charge transfer rate constant, ks and transfer coefficient for electron transfer between quinizarine and carbon paste electrode (CPE) were calculated as 2.76 s?1 and 0.6, respectively. This modified carbon paste electrode shows excellent electrocatalytic activity toward the oxidation of L-cysteine in a phosphate buffer solution (pH 7.0). The linear range of 1.0 × 10?6 to 1.0 × 10?3 M and a detection limit (3s) of 2.2 × 10?7 M were observed in pH 7.0 phosphate buffer solutions. In differential pulse voltammetry, the quinizarine modified carbon paste electrode (QMCPE) could separate the oxidation peak potentials of L-cysteine and tryptophan present in the same solution, though at the unmodified CPE the peak potentials were indistinguishable. This work introduces a simple and easy approach to selective detection of L-cysteine in the presence of tryptophan. Also, the modified electrode was employed for the determination of L-cysteine in the real samples such as serum of blood and acetylcysteine tablet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号