首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The x, T-phase diagram of the binary system Na2WO4Na2MoO4 has been redetermined at ambient pressure, taking into account the influence of hysteresis effects. Thermodynamic calculations, based upon transition entropies as determined by precision DSC (differential scanning calorimetry), indicate that the system is almost ideal with respect to the high-temperature phases.As anion dopes, Na2SO4 and Na2CrO4 give a metastable extension of the β-phase of Na2WO4 at decreasing temperature, involving some 40°C at 0.01 mole fraction of dopant. Cation dopes like Li2WO4 and K2WO4 behave quite differently.The electrical conductivity through the phase diagram is high in the α-phase (σ ~ 10?2 mho cm?1) almost regardless of composition. The anomalous high conductivity of the β-phase decreases with increasing molybdate content. In pure Na2MoO4 an anomaly occurs at the α-α2 transition, resembling the behavior of Na2WO4 at the β-α transition. The (highest) α2-phase is hexagonal, (P63mmc, showing large anisotropic thermal vibrations. The α-phase is orthorhombic (Fddd) as is the β-phase (probably Pbn21).  相似文献   

2.
研究了LiZr2(PO4)3在水溶液中的Na/Li和Ag/Li离子交换行为.结果表明,LiZr2(PO4)3对Na+和Ag+离子均具有很高的选择性,且对Ag+的选择性高于Na+.LiZr2(PO4)3与Ag+的离子交换反应是通过形成固溶体的形式进行的,而与Na+的离子交换反应则是通过置换进行的.温度升高有利于提高LiZr2(PO4)3上Na/Li和Ag/Li的离子交换反应速度.  相似文献   

3.
Colorless crystals of CsTh(MoO4)2Cl and Na4Th(WO4)4 have been synthesized at 993 K by the solid-state reactions of ThO2, MoO3, CsCl, and ThCl4 with Na2WO4. Both compounds have been characterized by the single-crystal X-ray diffraction. The structure of CsTh(MoO4)2Cl is orthorhombic, consisting of two adjacent [Th(MoO4)2] layers separated by an ionic CsCl sublattice. It can be considered as an insertion compound of Th(MoO4)2 and reformulated as Th(MoO4)2·CsCl. The Th atom coordinates to seven monodentate MoO4 tetrahedra and one Cl atom in a highly distorted square antiprism. Na4Th(WO4)4 adopts a scheelite superlattice structure. The three-dimensional framework of Na4Th(WO4)4 is constructed from corner-sharing ThO8 square antiprisms and WO4 tetrahedra. The space within the channels is filled by six-coordinate Na ions. Crystal data: CsTh(MoO4)2Cl, monoclinic, P21/c, Z=4, a=10.170(1) Å, b=10.030(1) Å, c=9.649(1) Å, β=95.671(2)°, V=979.5(2) Å3, R(F)=2.65% for I>2σ(I); Na4Th(WO4)4, tetragonal, I41/a, Z=4, a=11.437(1) Å, c=11.833(2) Å, V=1547.7(4) Å3, R(F)=3.02% for I>2σ(I).  相似文献   

4.
Interfacial impedances of the cell systems polished Pt/Na2WO4-Na2MoO4 and painted Pt/Na2WO4-Na2MoO4 were studied as a function of temperature and oxygen partial pressure by a.c. and pulse methods. The impedances are probably related to rate determining surface reactions of oxygen atoms and molecules. With Pt-paint, a particular type of impedance behaviour characterized by a constant phase angle, CPA, is observed: Zp=Kp(jω)?p (Kp and p independent of ω). No simple physical models were found to explain this behaviour, which is probably due to highly inhomogeneous current distribution effects.  相似文献   

5.
The compound Na5Li3Ti2S8 has been synthesized by the reaction of Ti with a Na/Li/S flux at 723 K. Na5Li3Ti2S8 crystallizes in a new structure type with four formula units in space group C2/c of the monoclinic system. The structure contains three crystallographically independent Na+ cations and two crystallographically independent Li+ cations. Na5Li3Ti2S8 possesses a channel structure that features two-dimensional layers built from Li(1)S4 and TiS4 tetrahedra. The layers, which are stacked along c, comprise eight-membered rings and sixteen-membered rings. Na(3)+ cations are located between the eight-membered rings and Na(1)+, Na(2)+, and Li(2)+ cations are located between the sixteen-membered rings. These cations are each octahedrally coordinated by six S2− anions. The ionic conductivity σT of Na5Li3Ti2S8 ranges from 8.8×10−6 S/cm at 303 K to 3.8×10−4 S/cm at 483 K. The activation energy Ea is 0.40 eV.  相似文献   

6.
The crystal structure of Na7Mg4.5(P2O7)4 has been solved by direct methods from the three-dimensional X-ray data. The space group is P1. The crystal structure consists of Mg2+, Na+, and P2O4?7 ions. One magnesium atom at symmetry center (0,0,0) and two sodium atoms at ±(?0.0421, ?0.0596, 0.2230) display occupation factors 0.5 each. A short interatomic distance between these Na+ and Mg2+ ions (1.80 ± 0.01 Å) excludes the occupation of both sites in the same unit cell. The crystal structure of Na7Mg4.5(P2O7)4 consists of unit cells containing Na8Mg4(P2O7)4 or Na6Mg5(P2O7)4 with a statistical occurrence 1:1.Each Mg2+ ion is octahedrally coordinated by six O2? ions at distances 1.979 – 2.270 Å. The coordination polyhedra around the Na+ ions are ill-defined. The bond angles POP in the P2O4?7 groups are 126.6 and 133.6° (±0.3°). The final reliability factor R is 7.1%.  相似文献   

7.
A Na3V2(PO4)3 sample coated uniformly with a layer of 6 nm carbon has been successfully synthesized by a one-step solid state reaction. This material shows two flat voltage plateaus at 3.4 V vs. Na+/Na and 1.63 V vs. Na+/Na in a nonaqueous sodium cell. When the Na3V2(PO4)3/C sample is tested as a cathode in a voltage range of 2.7-3.8 V vs. Na+/Na, its initial charge and discharge capacities are 98.6 and 93 mAh/g. The capacity retention of 99% can be achieved after 10 cycles. The electrode shows good cycle performance and moderate rate performance. When it is tested as an anode in a voltage range of 1.0-3.0 V vs. Na+/Na, the initial reversible capacity is 66.3 mAh/g and the capacity of 59 mAh/g can be maintained after 50 cycles. These preliminary results indicate that Na3V2(PO4)3/C is a new promising material for sodium ion batteries.  相似文献   

8.
The range of chemical flexibilities of the hexagonal frameworks (Ta6Si4O26)6? and (Ta14Si4O47)8? have been partially explored. This has been done with high-temperature preparations as in general ionic mobilities in these frameworks are too low to permit low-temperature ion exchange. Ionic site potential calculations indicate that preferential site-occupancy factors as well as geometric constraints are responsible for the absence of ionic motion. New phases K6?xNaxTa6Si4O26 (x ? 4), K8?xNaxTa14Si4O47 (x ? 5), and impure Ba3?xNa2xTa6Si4O26 have been prepared. Introduction of up to 2 moles of Li+ and 1 mole of Mg2+ ions per formula unit into sites of the framework not normally occupied has been demonstrated as well as the possibility of partially substituting Zr4+ for Ta5+ ions. Substitutions designed to introduce large tunnel vacancies in the presence of only monovalent K+ or Na+ ions (P for Si, W for Ta and F for O) generally proved unsuccessful. Competitive phases also frustrated attempts to substitute either the larger Rb+ or the smaller Li+ ions into the large-tunnel sites. A large area of solid solution was discovered in the BaONa2OTa2O5 phase diagram; it has a (TaO3)-framework with the structure of tetragonal potassium tungsten bronze.  相似文献   

9.
17O (40.7 MHz) and 183W (12.5 MHz) NMR spectra of aqueous Na10[H2W12O42]·27H2O (1), Na6[W7O24]·14H2O (2) and (NH4)6[Mo7O24nH2O solutions, as well as of 2, 1 and 0.1 M Na2WO4 and 2 M Li2WO4 solutions acidified up to P = 0.5, 1 and 1.14 have been measured. The composition of the W7O246? anion remains unchanged (2), its structure being similar to that of Mo7O246?183W NMR spectrum shows three resonances with the chemical shifts + 269.2, ?98.8 and ?178.9 ppm relative to WO42? and intensity ratio 1:4:2. “Paratungstate A” produced during polycondensation of WO42? at P ? 1.17 is identical with heptatungstate W7O246?. The [H2W12O42]10?183W NMR spectrum in the acidified 2 M Li2WO4 solution has four resonances with the chemical shifts in the range - 105–145 ppm and intensity ratio 1:2:1:2. As suggested by NMR data, the H2W12O4210? ? W7O246? transformations occur, which depend upon concentration and temperature.  相似文献   

10.
We have measured the ionic conductivities of pressed pellets of the layered compounds MUO2PO4 · nH2O, and correlated the results with TGA data. The conductivities (in ohm?1 m?1), at temperatures increasing with decreasing water content over the range 20 to 200°C, were approximately as follows: Li+4H2O, 10?4; Li+, Na+, K+, and NH4+3H2O, 10?4, 10?2, 10?4, and 10?4; H+, Li+, and Na+1.5H2O, 10?2, 10?4, and 10?4; Na+1H2O, 10?5; H+, K+, and NH4+0.5H2O, all 10?5; and H+, Li+, Na+, K+, NH+4, and 12Ca2+OH2O, 10?5, 10?5, 10?4, 10?5, 10?5, and 10?6. A ring mechanism is proposed to account for the high conductivity found in NaUO2PO4 · 3.1H2O. The accurate TGA data showed that most of the hydrates had water vacancies of the Schottky type, and should be represented as MUO2PO4(A ? x)H2O, where x can be between 0 and 0.3.  相似文献   

11.
Several compounds of the (Na1−xLix)CdIn2(PO4)3 solid solution were synthesized by a solid-state reaction in air, and pure alluaudite-like compounds were obtained for x=0.00, 0.25, and 0.50. X-ray Rietveld refinements indicate the occurrence of Cd2+ in the M(1) site, and of In3+ in the M(2) site of the alluaudite structure. This non-disordered cationic distribution is confirmed by the sharpness of the infrared absorption bands. The distribution of Na+ and Li+ on the A(1) and A(2)′ crystallographic sites cannot be accurately assessed by the Rietvled method, probably because the electronic densities involved in the Na+→Li+ substitution are very small. A comparison with the synthetic alluaudite-like compounds, (Na1−xLix)MnFe2(PO4)3, indicates the influence of the cations occupying the M(1) and M(2) sites on the coordination polyhedra morphologies of the A(1) and A(2)′ crystallographic sites.  相似文献   

12.
Na11[CuO4][SO4]3 was obtained from a redox reaction of CuO with Na2O2 in the presence of Na2O and Na2SO4 in sealed Ag containers under Ar atmosphere at 600°C. The crystal structure has been determined from X-ray single crystal data at 293 and 170 K (Pnma, Z=4). The lattice parameters have been refined from X-ray powder data at 293 K as well: a=1597.06(6) pm, b=703.26(3) pm, c=1481.95(6) pm. The structure contains isolated distorted square-planar [CuO4]5− anions and non-coordinating sulfate groups. Furthermore, we report calculations of the Madelung Part of the Lattice Energy (MAPLE) and some of the physical properties of Na11[CuO4][SO4]3.  相似文献   

13.
Compounds A2/3A1/3M2XO8 (A=Tl, Rb, Cs; A′=Na, Ag; M=Nb, Ta; X=P, As) have been synthesized using the ceramic method. The sodium and potassium compounds (A= Na and K) have been prepared by an ion exchange reaction starting from their thallium analogues. These materials are isotypic with Tl1−xNaxNb2PO8 (x=0.21) the structure of which has been determined by using X-ray single-crystal data. The space group is R32, the cell constants are aH=13.369(2), cH=10.324(3) Å and z=9. This compound is isostructural with Ca0.5+xCs2 Nb6P3O24. Its three-dimensional framework [Nb2PO8]n, built up from NbO6 octahedra and corner-sharing PO4 tetrahedra, delimits tunnels running along cH and cavities accommodating Tl+ and Na+ cations, respectively. The K2/3Na1/3Nb2PO8 structure, refined using X-ray powder data, showed that K+ cations are spread like the Tl+ ones over many sites, but more excentred from the tunnel axis. The isotypy of these compounds is also revealed by the similarity of the infrared and Raman spectra. The nonlinear optical study showed a behavior similar to that of the KDP for all the compounds. The ionic conductivity measurements gave high activation energies and low conductivity values for these materials.  相似文献   

14.
X-ray photoemission spectra of W4f electrons in vacuum-cleaved cubic NaxWO3 covering the entire composition range give no evidence for the existence of multiple W valences states in the bulk. Strong oxidation effects are observed in air exposed surfaces.  相似文献   

15.
The phase diagrams of the NaBO2-NaCl-Na2CO3, NaBO2-Na2CO3-Na2MoO4, NaBO2- Na2CO3-Na2WO4, and NaBO2-NaCl-Na2WO4 ternary systems were studied by a calculation-experimental method and differential thermal analysis. The coordinates of ternary eutectics were determined: E 1: 612°C, 16 mol % NaBO2, 42 mol % NaCl, and 42 mol % Na2CO3; E 2: 568°C, 12 mol % NaBO2, 28 mol % Na2CO3, and 60 mol % Na2MoO4; E 3: 575°C, 12 mol % NaBO2, 32 mol % Na2CO3, and 56 mol % Na2WO4; E 4: 628°C, 8 mol % NaBO2, 20 mol % NaCl, and 72 mol % Na2WO4; and E 5: 655°C, 9 mol % NaBO2, 53 mol % NaCl, and 38 mol % Na2WO4.  相似文献   

16.
A series of metalloborophosphates Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mg, Mn, Fe, Co, Ni, Cu, Zn) have been prepared hydrothermally and their structures have been solved by single-crystal diffraction techniques. They all crystallize in a hexagonal space group P63 and form a 3D microporous structure with 12-membered ring channels consisted of octahedral (MIIO6), tetrahedral (BO4, PO4) and triangular (BO2(OH)) units, in which the counter Na+ cations and water molecules are located. The Na+ cations are mobile and can be exchanged by Li+ in a melt of LiNO3. Their open frameworks are thermal stable up to about 500 °C. Completed solid solutions between two different transition metals can also be obtained. Magnetic properties of Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mn, Co, Ni, Cu) have been investigated.  相似文献   

17.
Phase equilibria in the Na2CO3-NaCl-H2O and Na2CO3-Na2WO4-H2O ternary systems formed by type 1 salts (NaCl, Na2WO4) and a type 2 salt (Na2CO3) were experimentally studied at temperatures from 425 to 500°C and pressures from 30 to 160 MPa with the contents of type 1 salts from 10 to 30 wt %. Transition from supercritical homogeneous fluid equilibria of the Na2CO3-H2O system to heterogeneous equilibria of the title ternary systems was studied in the presence or absence of liquid phase immiscibility in the type 1 subsystems.  相似文献   

18.
Calorimetric measurements of the enthalpy of reaction of WO3(c) with excess OH?(aq) have been made at 85°C. Similar measurements have been made with MoO3(c) at both 85 and 25°C, to permit estimation of ΔH°=?13.4 kcal mol?1 for the reaction WO3(c)+2OH?(aq)=WO2?4(aq)+H2O(liq) at 25°C. Combination of this ΔH° with ΔH°f for WO3(c) leads to ΔH°f=?256.5 kcal mol?1 for WO2?4(aq). We also obtain ΔH°f=?269.5 kcal mol?1 for H2WO4(c). Both of these values are discussed in relation to several earlier investigations.  相似文献   

19.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

20.
The standard potentials of the silver—silver tungstate, silver—silver phosphate and silver—silver arsenate electrodes in four different compositions of water—dioxane and water—urea mixtures at seven different temperatures from 5 to 35°C have been determined from EMF measurements of cells of the type Ag(s), AgCl(s), NaCl(c)//NaxZ(c/x), AgxZ(s), Ag(s), where x is 2 or 3, and Z is WO4, PO4 or AsO4. These values have been used to evaluate the transfer thermodynamic quantities accompanying the transfer of 1 g ion of WO2?4. PO3?4 or AsO3?4 ion from the standard state in water to the standard state in water—dioxane or water—urea mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号