首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The tear strength (TS) of rubber-silica composites is inevitably lowered by the reduction of viscoelastic dissipation imparted by the use of bifunctional silanes. It is of interest to find out whether promoting crack tip deviation represented by a slip-stick tearing can compensate for such a loss in the tear strength. Here, the phenomenon of crack growth in terms of the TS and also the tearing type is considered for both the untreated and silane-treated silica rubber composites to figure out the microstructure parameters affecting the slip-stick tearing. It was realized that within a certain volume fraction of the reinforcing filler, deviation whether in the form of slip-stick or knotty tearing can be found for both cases. Tearing for silane-treated silica is more similar to a slip-stick tearing with an ordered pattern of deviation and re-initiation; whereas tearing in the composites with untreated silica is like a knotty one with random deviation and re-initiation. Interestingly, a dual role was identified between the bound rubber content and the tearing: on one hand, increasing the bound rubber directly augments the viscoelastic dissipation and the value of TS, and on the other, it inversely suppresses the crack tip deviation. The second part of this work deals with applying strategies to promote crack tip deviation in treated silica systems. By increasing the degree of bonding at the rubber-silica interface and reducing the bound rubber, the tear deviation was successfully promoted. With a slip-stick type of tearing the crack had to proceed through a tortuous path, thereby enhancing the effective tear diameter and the subsequent tear strength. This roughening role of bound rubber is however insufficient to fully compete with the impact of bound rubber on the viscoelastic dissipation, and thus the decreased TS of composites with treated silica cannot be totally compensated by this strategy.  相似文献   

2.
Blends of natural rubber/virgin ethylene-propylene-diene-monomer (NR/EPDM) and natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) were prepared. A fixed amount of carbon black (30 phr) was also incorporated. The effect of the blend ratio (90/10, 80/20, 70/30, 60/40 and 50/50 (phr/phr)) on the compounding, mechanical and morphological properties of carbon-black-filled NR/EPDM and NR/R-EPDM blends was studied. The results indicated that both the carbon-black-filled NR/EPDM and NR/R-EPDM blends exhibited a decrease in tensile strength and elongation at break for increasing weight ratio of EPDM or R-EPDM. The maximum torque (S′MH), minimum torque (S′ML), torque difference (S′MH?ML), scorch time (ts2) and cure time (tc90) of carbon-black-filled NR/EPDM or NR/R-EPDM blends increased with increasing weight ratio of virgin EPDM or R-EPDM in the blend. SEM micrographs proved that, for low weight ratios of virgin EPDM or R-EPDM, the blends exhibited high surface roughness and matrix tearing lines. The blends also showed a reduction in crack path with increasing virgin EPDM or R-EPDM content over 30 phr. This reduction in crack path could lead to less resistance to crack propagation and, therefore, low tensile strength.  相似文献   

3.
The dimensions of reinforcing filler is a key factor in influencing the fracture and fatigue of rubbers. Here, the fracture and fatigue resistance of natural rubber (NR) filled with different dimensional carbon-based fillers including zero-dimensional spherical carbon black (CB), one-dimensional fibrous carbon nanotubes (CNTs) and two-dimensional planar graphene oxide (GO) were explored. To obtain equal hardness, a control indicator in the rubber industry, the amounts of CB, CNTs, and GO were 10.7 vol%, 1.2 vol%, and 1.6 vol%, respectively. J-integral and dynamic fatigue tests revealed that NR filled with CB exhibited the best quasi-static fracture resistance and dynamic crack growth resistance. The much higher hysteresis loss of NR filled with CNTs weakened its fatigue resistance. The planar GO played a limited role in preventing crack growth. Furthermore, digital image correlation revealed that NR filled with CB had the highest strain amplification level and area at the crack tip, which dissipated the most local input energy and then improved the fracture and fatigue performance.  相似文献   

4.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

5.
Commercially, the alteration of a rubber formulation is usually made in such a way as to keep the hardness of the rubber product constant. This is because a specific hardness of the rubber product sets the limit to its practical applications. Therefore, in this paper, natural rubber (NR) vulcanizates containing various fillers were prepared to have the same hardness level, and their mechanical properties were compared and related to the degree of filler dispersion. The results show that higher amounts of carbon black (CB) and silica are needed for CB- and silica-filled natural rubber vulcanizates to achieve the same hardness value as a NR vulcanizate containing 6 phr of montmorillonite clay. At equal loading of fillers, clay-filled vulcanizate exhibits higher modulus, hardness, tensile strength and compression set, but lower heat build-up resistance and crack growth resistance than those of the vulcanizates containing conventional fillers. For the vulcanizate having the same hardness value, CB-filled vulcanizate gives the better overall mechanical properties followed by the clay-filled and silica-filled vulcanizates, respectively. The explanation is given as the better dispersion of carbon black, as can be seen in the SEM micrograph.  相似文献   

6.
The effects of functionalized graphene sheets (FGSs) on the mechanical properties and strain‐induced crystallization of natural rubber (NR) are investigated. FGSs are predominantly single sheets of graphene with a lateral size of several hundreds of nanometers and a thickness of 1.5 nm. The effect of FGS and that of carbon black (CB) on the strain‐induced crystallization of NR is compared by coupled tensile tests and X‐ray diffraction experiments. Synchrotron X‐ray scattering enables simultaneous measurements of stress and crystallization of NR in real time during sample stretching. The onset of crystallization occurs at significantly lower strains for FGS‐filled NR samples compared with CB‐filled NR, even at low loadings. Neat‐NR exhibits strain‐induced crystallization around a strain of 2.25, while incorporation of 1 and 4 wt % FGS shifts the crystallization to strains of 1.25 and 0.75, respectively. In contrast, loadings of 16 wt % CB do not significantly shift the critical strain for crystallization. Two‐dimensional (2D) wide angle X‐ray scattering patterns show minor polymer chain alignment during stretching, in accord with previous results for NR. Small angle X‐ray scattering shows that FGS is aligned in the stretching direction, whereas CB does not show alignment or anisotropy. The mechanical properties of filled NR samples are investigated using cyclic tensile and dynamic mechanical measurements above and below the glass transition of NR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

7.
Prevulcanized natural rubber latex/clay aerogel nanocomposites   总被引:2,自引:0,他引:2  
Natural rubber latex (NR)/clay aerogel nanocomposites were produced via freeze-drying technique. The pristine clay (sodium montmorillonite) was introduced in 1-3 parts per hundred rubber (phr) in order to study the effect of clay in the NR matrix. The dispersion of the layered clay and the morphology of the nanocomposites were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Cure characteristics, thermal stability, and the crosslink density of thermal and microwave-cured NR and its composites were investigated. XRD patterns indicated that both intercalated and exfoliated structures were observed at loadings of 1-3 phr clay. SEM studies revealed that the clay aerogel structure was formed at 3 phr clay loading. The increment in Shore A hardness of nanocomposites compared with pure NR signified excellent polymer/filler interaction and the reinforcing effect of the clay to rubber matrix. This was supported by an increase in maximum rheometric torque and crosslink density. The crosslink density of clay-filled NR vulcanizate was found to increase with the pristine clay content in both thermal and microwave curing methods. However, microwave-cured 2 and 3 phr-filled NR vulcanizates exhibited higher crosslink density than those which were thermal-cured under the same curing temperature. In addition, thermal stability studies showed that pristine clay accelerated the decomposition of NR by showing a slight decrease in onset and peak decomposition temperatures along with clay content.  相似文献   

8.
In the present work, rubber/clay nanocomposites were prepared by a solution mixing process using fluoroelastomers and different nanoclays (namely, Cloisite NA+, Cloisite 10A, Cloisite 20A, and Cloisite 30B). Fluoroelastomers having different microstructure and viscosity (Viton B‐50, Viton B‐600, Viton A‐200, and VTR‐8550) were used. Characterization of the nanocomposites was done by using X‐ray diffraction and atomic force microscopy. The mechanical and dynamic mechanical properties were studied. The surface energy of the clays and the elastomer was also measured. Even with the addition of only 4 phr of clay in Viton B‐50, tensile strength and modulus improved by 30–96% and 80–134%, respectively, depending on the nature of the nanoclays. Exfoliation was observed with both the unmodified and the modified clays at low loading in all the fluoroelastomers. Best properties were observed with the unmodified clay. All the grades of fluororubber followed the same trend. The increment (19%) in storage modulus was also higher in the case of the unmodified clay filled Viton B‐50 system. The results were explained with the help of thermodynamics, surface energies, and swelling studies. The difference in surface energy, Δγ, between the rubber and the unmodified clay was lower. The work of adhesion (67.63 mJ/m2) between Viton B‐50 and Cloisite NA+ was also higher than that (51.42 mJ/m2) between Viton B‐50 and Cloisite 20A. Negative ΔHS value for the unmodified clay‐filled system thermodynamically favored the formation of the nanocomposite as compared to the modified clay filled samples where ΔHS is positive or zero. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 162‐176, 2006  相似文献   

9.
The cutting behavior of elastomers by a sharp object was investigated using various elastomers such as acrylonitrile–butadiene rubber (NBR), styrene–butadiene rubber (SBR), and natural rubber (NR). The effects of crosslinking density, cutting rate, and temperature on the cutting energy of elastomers were investigated. The cutting behavior of swollen elastomers was also investigated. It was found that the cutting energy increased as the molecular weight between crosslinks increased. It was also found that the cutting energies of various elastomers did not yield a single line. Moreover, even in the threshold condition of cutting process, the cutting energy was much higher than the threshold fracture energy. These results suggest that the cutting behavior cannot be explained by only a C C bond rupture process, but it includes other energy dissipation processes. The curves for cutting energies obtained at different cutting rates and temperatures were well superimposed on a single master curve when they were shifted using the WLF (Williams, Landel, and Ferry) equation. Therefore, it is supposed that the cutting of elastomers by a sharp object includes viscoelastic energy dissipation process and is the viscoelastic behavior. It was also found that the variation of cutting energy over a considerable range of effective rates was smaller than that of the tear energy. It is attributed to the fact that the change of the crack tip diameter, i.e., roughening or reduction, was restricted by the diameter of razor blade. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1283–1291, 1998  相似文献   

10.
Acrylonitrile butadiene rubber (NBR) compounds filled with 40 phr of high abrasion furnace black (HAF) and HAF (20 phr)/graphite (20 phr) were experimentally investigated. The stress-strain curves of the composites were studied, which are described by applying Ogden's model. The effect of cyclic fatigue and hysteresis was also examined. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A continuum damage model is used to investigate the fatigue damage behavior for elastomers. Experiments on the cyclic fatigue of a carbon-filled NBR rubber and carbon/graphite filled NBR rubber were conducted to determine the relation between the number of cyclic fatigue and the strain amplitude. The results indicate that the theoretical formula for the number of cyclic fatigue as a function of the strain amplitude, derived from the damage model, can describe experimental data for the prepared samples very well.  相似文献   

11.
The carbon–silica dual phase filler (CSDPF) was modified by bis (3‐triethoxy‐silylpropyl) tetrasulphane (Si69) and 1‐allyl‐3‐methyl‐imidazolium chloride (AMI), respectively. The natural rubber (NR) vulcanizates filled with modified CSDPF were fabricated through mechanical mixing followed by a high‐temperature cure process. The impacts of filler surface modification on the curing characters, crosslinked junctions, network structure, and mechanical properties of NR vulcanizates were investigated. The results showed that the Si69 interacted with CSDPF through covalent bond, while the interaction between AMI and CSDPF was hydrogen bond. Both modifications increased the cure rate of CSDPF/NR compounds as well as the crosslinked degree, compared with those of pristine CSDPF/NR compound. The modifications improved the dispersion of CSDPF in NR matrix. The covalent modification by Si69 caused a limited movement of NR chains in the CSDPF surface, which contributed to a greater tensile modulus of Si69‐modified CSDPF/NR. However, the higher content of mono‐sulfidic crosslink and the poorer content of strain‐induced crystallization in the NR matrix led to a slight increase of tensile strength and tear strength of Si69‐modified CSDPF/NR, compared with those of CSDPF/NR. The tensile modulus of AMI‐modified CSDPF/NR had a lower value due to a faster polymer chain motion on the CSDPF surface. However, the tensile and tear strength of AMI‐modified CSDPF/NR increased significantly because of the increase of mono‐sulfidic crosslink, strain‐induced crystallization, and the existed hydrogen bond between CSDPF and NR. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Crystalline structures, nonisothermal crystallization behavior and surface folding free energy of polypropylene (PP)/poly(ethylene‐co‐vinyl acetate) (EVA) blend‐based organically modified montmorillonite (OMMT) nanocomposites were investigated by use of wide angle X‐ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Nonisothermal crystallization kinetic analysis was performed using Avrami equation modified by Jeziorny as well as combined Avrami‐Ozawa method. Surface folding free energy and activation energy for PP and nanocomposite samples were also determined employing Hoffman‐Lauritzen's and Vyazovkins's approaches, respectively. The results obtained from transmission electron microscopy (TEM) showed that presence of EVA, which attracts most of the layered silicates, reduces number density of heterogeneous nuclei in the matrix and as a consequence, decreases the nucleation rate. Incorporation of EVA, PP‐g‐MA and OMMT results in a decrease of the chain surface folding free energy level. It was shown that although, OMMT acts as a barrier against the PP macromolecular motion but interestingly, it increases the overall crystallization rate. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 674–684, 2009  相似文献   

13.
In this study, fracture toughness of nanocomposite hydrogels is quantified, and active mechanisms for dissipation of energy of nanocomposite hydrogels are ascertained. Poly(N,N‐dimethylacrylamide) nanocomposite hydrogels are prepared by in situ free radical polymerization with the incorporation of Laponite, a hectorite synthetic clay. Transmission electron microscopy proves exfoliation of clay platelets that serve as multifunctional crosslinkers in the created physical network. Extraordinary high fracture energies of up to 6800 J m?2 are determined by the pure shear test approach, which shows that these soft and stretchable hydrogels are insensitive to notches. In contrast to single‐ and double‐network hydrogels, dynamic mechanic analysis and stress relaxation experiments clarify that significant viscoelastic dissipation occurs during deformation of nanocomposite hydrogels. Similar to double‐network hydrogels, crack tip blunting and plastic deformation also contribute to the observed massive fracture energies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1763–1773  相似文献   

14.
Montmorillonite exfoliated nanoclay was prepared by treating montmorillonite with an alkyalmmonium salt. It has been characterized by FT-IR spectroscopy and thermal analysis (TGA-DTA). The nanoclay composites, in which the rubber matrix was introduced by mixing solutions of the elastomer with the organically modified clay was then compounded with carbon black filler at 2.5, 5, 10, 15 phr loading level of nanoclay. The sulfur cured rubber samples were tested against a reference compound not filled with the nanoclay. Rheometrical and scorch measurements have shown that the nanoclay increases the curing speed and reduces the scorch safety. A very high reinforcement and stiffening effect due to the nanoclay was observed especially at 5 and 10 phr nanoclay filling level and especially at low extension modulus which can be increased up to 40% its original level than in the reference compound. An anisotropic behavior has been recorded in the stress-strain curve: for instance the 50% modulus was found >20% higher when measured parallel to the alignment of the exfoliated nanoclay lamellae in comparison to the modulus perpendicular to the lamellae orientation. The compounds with nanoclay show no adverse effects in tensile strength and in tear resistance, in De Mattia crack initiation and in abrasion resistance. Nanoclay reduces also the hysteresis and heat build up of the rubber compounds.  相似文献   

15.
Ethylene/vinyl acetate rubber (EVM) was reinforced by sodium methacrylate (NaMAA) that was in situ prepared through the neutralization of sodium hydroxide and methacrylic acid in EVM during mixing. The mechanical properties of EVM vulcanizates with different NaMAA loadings and at different crosslink densities were studied and compared with those of high abrasion furnace carbon black (HAF) filled EVM vulcanizates. The fracture surfaces of gum and filled EVM vulcanizates were observed with scanning electron microscopy. The results showed that NaMAA‐reinforced EVM vulcanizates had better mechanical properties than HAF/EVM vulcanizates. When the NaMAA loading was 50 phr, the tensile strength of the NaMAA/EVM vulcanizate was 30 MPa, the tear strength was 102 kN/m, and the elongation at break was over 400%. Fourier transform infrared analysis confirmed that NaMAA formed in the compounding process and underwent polymerization during vulcanization. Scanning probe microscopy analysis revealed that nanoscale particles dispersed in the NaMAA/EVM vulcanizates. The mechanical properties were correlated with the fracture morphology of all the vulcanizates. The tensile rupture of NaMAA‐filled EVM vulcanizates occurred through tearing from a crack in the bulk of the samples. Tear deviation occurred with the addition of NaMAA and resulted in a rough surface, leading to an improvement in the tear strength of NaMAA‐filled EVM vulcanizates. The micrographs of the tear surfaces of the vulcanizates indicated that the different fracture modes depended on the NaMAA loading and the crosslink density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1715–1724, 2004  相似文献   

16.
A feasibility study was carried out on the utilization of Alkanolamide (ALK) on silica reinforcement of natural rubber (NR) by using a semi-efficient cure system. The ALK was incorporated into the NR compound at 1.0, 3.0, 5.0, 7.0 and 9.0 phr. An investigation was carried out to examine the effect of ALK on the cure characteristics and properties of NR compounds. It was found that ALK gave shorter scorch and cure times for silica-filled NR compounds. ALK also exhibited higher torque differences, tensile modulus, tensile strength, hardness and crosslink density of up to 5.0 phr of ALK loading, and then decreased with further increases of ALK loading. The resilience increased with increased ALK loading. Scanning electron microscopy (SEM) micrographs proved that 5.0 phr of ALK in the silica-filled NR compound exhibited the greatest matrix tearing line and surface roughness due to higher reinforcement level of the silica, as well as better dispersion and cure enhancement.  相似文献   

17.
We explore nanocavitation around the crack tip region in a styrene‐butadiene random copolymer filled with typical carbon black (CB) particles used in the rubber industry for toughening the rubber. Using quasistatic loading conditions and a highly collimated X‐ray microbeam scanned around the crack tip, we demonstrate the existence of a damage zone consisting of nanovoids in a filled elastomer matrix. The existence of voids near the crack tip is demonstrated by a significant increase of the scattering invariant Q/Q0 in front of both fatigued and fresh cracks. The size of the zone where cavities are present critically depends on the macroscopic strain εm, the loading history, and the maximum energy release rate G applied to accommodate the crack. Our findings show that nanovoiding occurs before fracture in typical CB‐filled elastomers and that realistic crack propagation models for such elastomers should take into account a certain level of compressibility near the crack tip. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 422–429  相似文献   

18.
CSF纳米炭黑硫化橡胶的性能   总被引:3,自引:1,他引:2  
张新惠  李柏林 《应用化学》2003,20(11):1117-0
天然橡胶;丁苯橡胶;丁腈橡胶;硫化;气密性;导电性;CSF纳米炭黑硫化橡胶的性能  相似文献   

19.
Microbial desulfurization of waste tyre rubber has been investigated with great efforts since 1990s, because waste rubber has created serious ecological and environmental problems. A microbial desulfurization technique for SBR ground rubber has been developed by a novel sulfur‐oxidizing bacterium Sphingomonas sp. The adaptability of Sphingomonas sp. with SBR ground rubber was tested with the amounts of SBR ground rubber varying from 0.5 to 4% g/l. The sol fraction of desulfurized SBR ground rubber increased 70%, compared with SBR ground rubber without desulfurization. Fourier transform infrared spectroscopy‐attenuated total reflectance (FTIR‐ATR) spectrum and X‐ray photoelectron spectroscopy (XPS) analysis of the desulfurized surface of vulcanized SBR flakes revealed that not only the oxidation of crosslinked S? S and S? C bonds, but also the rupture of C?C double bonds had happened to SBR vulcanizates during microbial desulfurization. The cure characteristics, such as scorch time and optimum cure time of natural rubber (NR) vulcanizates filled, were found to decrease with increasing contents of desulfurized SBR ground rubber, due to some reactive groups on its surface. NR vulcanizates filled with desulfurized SBR ground rubber had lower crosslink density and hardness, higher tensile strength and elongation at break, compared with those filled with SBR ground rubber of the same amount. Dynamic mechanical properties indicated that there were better crosslink distribution and stronger interfacial bonding between NR matrix and desulfurized SBR ground rubber. Scanning electron microscope (SEM) photographs showed that the fracture surfaces of NR vulcanizates filled with desulfurized SBR ground rubber had more smooth morphologies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Layered silicate/natural rubber composites were prepared by direct polymer melt intercalation. Na‐montmorillonite Kunipia‐F and its organic derivates (organo‐clays) prepared by ion exchange were used as clay fillers. Silica (SiO2) Ultrasil VN3, a filler commonly used in the rubber industry, was used in combination with clay fillers. The effect of clay or organo‐clay loading from 1 up to 10 phr without (0 phr) or with silica (15 phr) showed significant improvement of the tensile properties (stress at break, strain at break and modulus M100). Modification of montmorillonite by three alkylammonium cations with the same length of alkylammonium chain (18 carbons) and different structure resulted in altered reinforcing and plasticizing effects of the filler in composites with rubber matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号