首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficiencies of He/NH3 and He/H2 collision gases were compared in a conventional type of hexapole cell of an inductively coupled plasma mass spectrometer (ICP-MS). The optimum conditions [hexapole and quadrupole bias voltage (VH and VQ) and collision/reaction gas flow rates] were tested for vanadium determination (51V) in chloride matrices. When the He/H2 mixture was used, the optimum values of VH and VQ were −10.0 and −8.0 V, respectively. This set-up corresponds to the kinetic energy discrimination effect. When the He/NH3 mixture was used, the optimum values of VH and VQ were +10.0 and −7.0 V, respectively. Positive VH values correspond to the ion kinetic energy effect, which allows the reactivity of the ions entering the collision/reaction cell with the reaction gas to be controlled. The obtained results showed that the He/H2 mixture is not optimal for V determination in samples containing chlorides due to the insufficient suppression of the polyatomic interference of 35Cl16O+. Data obtained from vanadium determination using the He/NH3 mixture were consistent for all selected Cl concentrations, and the results were acceptable. The detection limit was comparable with detection limits obtained from ICP-MS equipped with a dynamic reaction cell. Analyses of elements forming interfering molecules, e.g., iron (56Fe), arsenic (75As) and selenium (80Se), were in good agreement with the certified values for both studied collision/reaction gas mixtures.  相似文献   

2.
The reaction between C2H5 and O2 at 295 K has been studied with a flow reactor sampled by a mass spectrometer. With helium as the carrier gas the rate coefficient was found to increase from (1.2 ± 0.3) × 10?12 to (3.6 ± 0.9) × 10?12 cm3/s as [He] was increased from 2 × 1016 to 3.4 × 1017 cm?3. The importance of has been determined from a knowledge of the initial C2H5 concentration together with a measurement of the C2H4 produced in reaction (5). F, the fraction of the C2H5 radicals removed by path (5), was found to decrease from 0.15 to 0.06 as [He] increased from 2 × 1016 to 3.4 × 1017 cm?3. The rate coefficient for reaction (5) was found to be independent of [He] and to have a value of (2.1 ± 0.5) × 10?13 cm3/s. The variation in F reflects the fact that k1b increases as [He] increases. These observations are taken as evidence for a direct mechanism for C2H4 production and a collision-stabilized route for C2H5O2 formation. Calculations indicate that the high-pressure limit for reaction (1b) is ~4.4 × 10?12 cm3/s and that in the polluted troposphere the branching ratio for reactions (1b) and (5) will be ~l20.  相似文献   

3.
Anion-exchange chromatography with inductively coupled plasma mass spectrometry (ICP-MS) is often used for the speciation of arsenic (As). In this work, either He or H2 was introduced to the octopole collision/reaction cell to eliminate chloride (Cl) interferences during As speciation by ICP-MS. Polyatomic species, 40Ar35Cl and 38Ar37Cl, which are formed in high chloride matrices interfere with the ICP-MS detection of 75As. These interferences were reduced or eliminated by introducing He or H2 to the collision/reaction cell, with some loss in sensitivity when compared to the standard mode (no gas). For example, the sensitivity of As(V) was 30.4 and 17.7% of that observed in standard mode when introducing He and H2, respectively. Chloride interference was completely eliminated using a flow rate of 3.0 mL min− 1 with H2 as a reaction gas with detection limits in the range of 0.3-0.6 μg L− 1. The developed method was applied to determination of arsenic species in waters containing high concentrations of chloride by following a simple procedure and without modification of the ICP-MS instrument.  相似文献   

4.
Measurements of the Penning ionization cross section, σPI of D atoms by metastable He atoms show that σPI for the reaction He (2 1S) + D is much larger than σPI for He (2 3S) + D. In the relative velocity range νr = (2.3–4.8) × 105 cm/s (0.037–0.163 eV), σPI for He (2 1S) + D collisions was found to vary as νr?0.33.  相似文献   

5.
The application of an ion-guiding buffer gas-filled hexapole collision and reaction cell in ICP-MS has been studied in order to give a preliminary performance characterization of a new instrument providing this feature for increasing the ion yield and decreasing contributions from Ar induced interfering molecular ions. As buffer gas He was used while H2 served as reaction gas. Addition of the latter can be an effective means for reduction of typical argon induced polyatomic ions (Ar+, ArO+, Ar2 +) by orders of magnitude owing to gas phase reactions. Molecular interferences generated in the cell can be suppressed by a retarding electric field established by a dc hexapole bias potential of –2 V. Received: 10 May 1999 / Revised: 4 June 1999 / Accepted: 12 June 1999  相似文献   

6.
A flash photolysis resonance fluorescence technique has been employed to investigate the kinetics and mechanism of the reaction of OH(X2Π) radicals with CH3I over the temperature and pressure ranges 295–390 K and 82–303 Torr of He, respectively. The experiments involved time‐resolved RF detection of the OH (A2Σ+ → X2Π transition at λ = 308 nm) following FP of H2O/CH3I/He mixtures. The OH(X2Π) radicals were produced by FP of H2O in the vacuum‐UV at wavelengths λ > 115 nm using a commercial Perkin‐Elmer Xe flash lamp. Decays of OH in the presence of CH3I are observed to be exponential, and the decay rates are found to be linearly dependent on the CH3I concentration. The measured rate coefficients for the reaction of OH with CH3I are described by the Arrhenius expression kOH+CH3I = (4.1 ± 2.2) × 10?12 exp [(?1240 ± 200)K/T] cm3 molecule?1s?1. The implications of the reported kinetic results for understanding the CH3I chemistry of both atmospheric and nuclear industry interests are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 547–556, 2011  相似文献   

7.
SbxOy clusters are produced by using a gas aggregation technique. Antimony vapor is mixed with He/O2 or He/N2O and cooled in a reaction channel. After photoionisation with a KrF (248 nm) or ArF (193 nm) excimer laser the products are mass analyzed in a time of flight mass spectrometer. In the presence of N2O no oxide clusters besides SbO+ can be detected, while with oxygen under similar experimental conditions dramatic changes can be observed. At low oxygen partial pressure the obtained spectra are dominated by the pure Sb x + clusters with low intensity of SbxO y + , whereas at high oxygen partial pressure antimony oxides following the general sequence SbO+(Sb2O3)n are most abundant. The same stable species can furthermore be produced via aggregation of vaporised solid antimony oxide (Sb2O3). Within these experiments another new Series of antimony oxides tentatively assigned to (Sb2O3) n + appeared in the mass spectra.  相似文献   

8.
The primary quantum yield of H-atom production in the pulsed-laser photolysis of hydrazine vapor, N2H4 + hν → H + N2H3, was measured to be (1.01 ± 0.12) at 193 nm relative to HBr photolysis, and (1.06 ± 0.16) at 222 nm relative to 248-nm N2H4 photolysis, in excess He buffer gas at 296 K. The H-atoms were directly monitored in the photolysis by cw-resonance fluorescence detection of H(2S) at 121.6 nm. The high H-atom yield observed in the photolysis is consistent with the continuous ultraviolet absorption spectrum of N2H4 involving unit dissociation of the diamine from repulsive excited singlet state(s). The laser photodissociation of N2H4 was thus used as a ‘clean’ source of H-atoms in excess N2H4 and He buffer gas to study the gas-phase reaction, H + N2H4 → products; (k1), in a thermostated photolysis reactor made of quartz or Pyrex. The pseudo-first-order temporal profiles of [H] decay immediately after photolysis were determined for a range of different hydrazine concentrations employed in the experiments to calculate the absolute second-order reaction rate coefficient, k1. The Arrhenius expression was determined to be k1 = (11.7 ± 0.7) × 10?12 exp[?(1260 ± 20)/T] cm3 molec?1 s?1 in the temperature range 222–657 K. The rate coefficient at room temperature was, within experimental errors, independent of the He buffer gas pressure in the range 24.5–603 torr. The above temperature dependence of k1 is in excellent agreement to that we determine in our discharge flow-tube apparatus in the temperature range 372–252 K and in 9.5 torr of He pressure. The Arrhenius parameters we report are consistent with a metathesis reaction mechanism involving the abstraction of hydrogen from N2H4 by the H-atom. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
The reaction of C2H5O2 with NO in helium carrier gas at 295 K with [He] = 1.6 × 1017 cm?3 has been studied using a gas flow reactor sampled by a mass spectrometer. Because no parent molecular ion or suitable fragment ion produced by C2H5O2 could be detected, the reaction was followed by measuring the formation of NO2. In so doing, account had to be taken of the small amount of HO2 known to be present in the reaction mixture, which also leads to NO2 on reaction with NO. The rate coefficient for the total reaction of C2H5O2 with NO was found to be (8.9 ± 3.0) × 10?12 cm3/s, and the path which produces NO2 was found to account for at least 80% of all C2H5O2.  相似文献   

10.
A flash photolysis–resonance fluorescence technique was used to investigate the kinetics of the OH(X2Π) radical and O(3P) atom‐initiated reactions with CHI3 and the kinetics of the O(3P) atom‐initiated reaction with C2H5I. The reactions of the O(3P) atom with CHI3 and C2H5I were studied over the temperature range of 296 to 373 K in 14 Torr of helium, and the reaction of the OH (X2Π) radical with CHI3 was studied at T = 298 K in 186 Torr of helium. The experiments involved time‐resolved resonance fluorescence detection of OH (A2Σ+ → X2Π transition at λ = 308 nm) and of O(3P) (λ = 130.2, 130.5, and 130.6 nm) following flash photolysis of the H2O/He, H2O/CHI3/He, O3/He, and O3/C2H5I/He mixtures. A xenon vacuum UV (VUV) flash lamp (λ > 120 nm) served as a photolysis light source. The OH radicals were produced by the VUV flash photolysis of water, and the O(3P) atoms were produced by the VUV flash photolysis of ozone. Decays of OH radicals and O(3P) atoms in the presence of CHI3 and C2H5I were observed to be exponential, and the decay rates were found to be linearly dependent on the CHI3 and C2H5I concentrations. Measured rate coefficients for the reaction of O(3P) atoms with CHI3 and C2H5I are described by the following Arrhenius expressions (units are cm3 s?1): kO+C2H5I(T) = (17.2 ± 7.4) × 10?12 exp[?(190 ± 140)K/T] and kO+CHI3(T) = (1.80 ± 2.70) × 10?12 exp[?(440 ± 500)K/T]; the 298 K rate coefficient for the reaction of the OH radical with CHI3 is kOH+CHI3(298 K) = (1.65 ± 0.06) × 10?11 cm3 s?1. The listed uncertainty values of the Arrhenius parameters are 2σ‐standard errors of the calculated slopes by linear regression.  相似文献   

11.
A high pressure microwave discharge source operating with a dilute mixture of O2 in He has been used to produce a supersonic nozzle beam of O atoms seeded in He. This source has been used to study the reactive scattering of O atoms with Cl2 and CS2 molecules at an initial translational energy E = 38 kJ mol?1. Velocity distribution of reactive scattering were measured over a wide angular range by cross-correlation time-of-flight analysis. The O + Cl2 reaction proceeds via a short-lived collision complex while the O + CS2 reaction follows a stripping mechanism.  相似文献   

12.
Deuterium and15N were used as activable tracers for the study of the dissolution of hydrogen and nitrogen in silicon. Silicon was heated or zone-melted in D2-Ar, or heated in15N2-Ar after being covered with Si3 25N4. Depth profiles of D or15N in the resultant silicon samples were measured by the D(3He, p)4He or15N(, n)18F reaction combined with repeated HF–HNO3 etching. These two measurements have proved to be highly reliable and sensitive and to offer useful techniques in the study of trace concentrations of hydrogen and nitrogen in solid matrices.  相似文献   

13.
We propose an interpretation of experimental measurements of dissociative charge-transfer processes X2++Y→X+X+Y+ (X=rare-gas atom) in terms of avoided-crossings of adiabatic potential surfaces. Model potential energy surfaces for a typical system (X=He, Y=Ne) are computed by the method of diatomics-in-molecules (DIM). The qualitative shapes of the surfaces suggest dynamical simplifications which can be embodied in a classical-mechanical trajectory model with “surface-hopping”. Analogy with earlier surface-hopping trajectory calculations and with trajectories for endothermic ion-molecule reactons provides a basis for understanding some of the major experimental findings for the He2+-Ne reaction. The model viewpoint is also able to rationalize the observance (or non-observance) of other rare-gas reactions and can be extended to the case where Y=N2, X=He.  相似文献   

14.
可见光驱动的光催化产氢同时诱导低能核反应嬗变钾为钙   总被引:1,自引:1,他引:0  
吕功煊  张文妍 《分子催化》2017,31(5):401-410
报道了曙红、氯铂酸钾、氧化石墨烯和三乙醇胺混合物悬浮体系在可见光照射条件下将钾嬗变为钙的现象.在大于440 nm光照的条件下,反应体系可以产生大量的氢气,同时体系中的部分钾原子转变为钙元子.在反应过程中,悬浮混合物中的钙元素浓度持续增加,同时伴随发生质子的还原为氢和部分质子反应为氦3和氦4的反应.分析表明,在自然界的某种环境和条件下,钙有可能通过在温和条件下的低能核反应(LENR)经历钾的嬗变生成,这个过程可能与光催化产氢过程中生成的负氢有关.  相似文献   

15.
The recombination of bromine atoms at room temperature has been studied by flash photolysis in the range of 1–100 atm of the inert diluent He, leading to a value for the third-order rate constant of (1.5 ± 0.2) × 1015 cm6/mol2.sec. In the presence of NO the recombination is considerably accelerated. The falloff curve of the recombination Br + NO (+He) → BrNO (+He) was also measured resulting in a value for the limiting low-pressure rate constant of (3.4 ± 1.3) × 1015 cm6/mol2.sec. In experiments with excess NO, rate constants of (2.2 ± 1) × 1014 cm3/mol·sec for the reaction Br + BrNO → Br2 + NO, and (6.1 ± 0.4) × 109 cm6/mol2.sec for the reaction Br2 + 2NO → 2BrNO were obtained.  相似文献   

16.
The reaction between nitric oxide and vibrationally excited ozone was studied in a fast flow reactor by monitoring the visible emission from electronically excited NO21. The antisymmetric mode (ν3) of O3 was excited with a Q-switched 9.6 μm CO2 laser, and a laser-induced signal was detected, with a rise rate constant of (4.0 ± 0.5) × 1011 cm3/mole sec and a decay rate constant of (1.1 ± 0.1) × 1011 cm3/mole sec for an NO-rich mixture. The latter was unaffected by addition of large amounts of He or Ar, indicating that the signal was not a thermal effect. Most of the measurements were made at 350°K; however, the He and Ar dilution results suggest that the enhanced reaction rate is not very sensitive to temperature. In order to explain the observed rise times, it was necessary to postulate an intermediate step prior to the chemical reaction. A model which is consistent with our data has energy transferred from ν3 to ν2 (the bending mode) at a rate of (2.9 ± 0.5) × 1011 cm3/mole sec for NO and a rate of (1.1 ± 0.2) × 1011 cm3/mole sec for He. According to this model, the rate constant for the reaction of NO with O3 (ν2= 1) producing vibrationally excited ground state NO22,
NO + O32 (010) 3 NO22 + O2
is (1.5 ± 0.2) × 1011 cm3/mole sec, and the relative rate for the reaction of O3 (ν2 = 1) and O32 = 0) with NO was estimated to be k3(1)k3(0) ≈ 22.  相似文献   

17.
The reaction rates of SO3 with CH3OH in He were measured at total pressures of 0.7–1.6 torr in flow tubes. The concentration of SO3 was monitored by the SO2* fluorescence from excitation of SO3 at 147 nm. The reaction rate constant of SO3 + CH3OH in the gas phase is determined to be (1.17 ± 0.16) × 10?13 cm3 molec?1 s?1 at room temperature.  相似文献   

18.
We present a detailed study of the energies of the ions stored in a quadrupole ion trap mass spectrometer (QITMS). Previous studies have shown that the rate constant, k, for the charge exchange reaction Ar+ N+ 2 →, N+ 2+Ar increases with increasing ion-molecule center-of-mass kinetic energy (K.E.cm). Thus, we have determined k for this chemical “thermometer” reaction at a variety of Ar and N2 pressures and have assigned K.E.cm values as a function of the q2 of the Ar+ ion both with and without He buffer gas present in the trap. The K.E.cm energies are found to lie within the range 0.11–0.34 eV over the variety of experimental conditions investigated. Quantitative “cooling” effects due to the presence of He buffer gas are reported, as are increases in K.E.cm due to an increase in the q2 of the Ar+ ion. “Effective” temperatures of the Ar+ ions in He buffer are determined based on a Maxwell-Boltzmann distribution of ion energies. The resulting temperatures are found to lie within the range ≈ 1700–3300 K. We have also examined the K.E.cm, values arising from the chemical thermometer reaction of O+ 2 with CH4, as previous assignments of effective ion temperatures based on this reaction have been called into question.  相似文献   

19.
The energy transfer reactions He(23S) + H2O and He(23S) + H2S were studied spectroscopically in the visible and ultraviolet ranges in a flowing afterglow apparatus. No primary triatomic ion emission was observed in this study. Only dissociative fragments were found to emit. In the He(23S)/H2O system intense OH(A2Σ+ → X2Πi) emission bands and hydrogen Balmer series were observed while in the He(23S)/H2S system intense HS+(A3Πi → X3 Σ?), weak hydrogen Balmer series and some atomic sulfur lines were found. It is concluded that dissociative processes are competitive with Penning ionization in these energy transfer reactions with other possible reaction channels playing inferior roles. The post-ionization process of ion—electron recombination in the flowing afterglow dominates the emission results in the He(23S)/H2O system.  相似文献   

20.
Rotationally inelastic collisions of NH2( Ã2A1), ∑(0,9,0), 303, 101 have been studied by measuring the dispersed fluorescence spectra at molecular beam conditions. The results show that the angular momentum transfer rule is much more successful than is that predicted by energy gap law for fitting the rotational energy transfer rate. For ΔN < 2 the transfer rates are getting slow down. Downward transfer rates are faster than those of upward transfer. With same angular momentum transferred, the transfer rates for Δka = 0 process are larger than those for Δka≠0. It is also found that rotation transfer process is a very efficient way for decaying of the initially pumped levels. About 60% of the initially pumped 303 is colliding into other rotational levels. Energy transfer reactions of metastable rare gas atoms (Rg*) with N2, NH3, CS2 were investigated by measuring the emission spectra. The preferential population of n(A″) of NH(c1II) was found in He(23S) + NH3 reaction, the experimental data shows II(A″)/II(A′) = 1.2 at J′ < 13. A high vibrational excitation and low rotational excitation of N2(C3n) were observed in Ne(3P02) + N2 reaction comparing with Ar(3P0.2) + N2 reaction. The detailed vibrational populations of CS2+ (Ã, B?) achieved by He(23S)/Ne(3P0.2) + CS2 reaction are different from those obtained by PES. The vibrational distributions of CH(A2Δ) obtained by He(23S) + CHC13 (CH3NO2) reactions were discussed based on statistical theory, special attention was paid to reveal the role played by tie angular momentum restriction in this process. The result on energy transfer between N2(a1 Π) and CO(X1 ∑) was firstly presented by VUV emission spectra at single collision condition. The mechanisms of energy transfer related to some of the reactions mentioned above were also discussed in the text.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号