首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New derivatives of 3-hydroxyquinolone (3HQ) with a fused benzene ring (3-hydroxybenzo[g]quinolones) have been synthesized. They display a remarkable red shift of their absorption spectrum in comparison with other 3HQ analogs allowing their excitation by common He/Cd and Ar-ion lasers. As a result of their irreversible excited-state intramolecular proton transfer (ESIPT) reaction, they display a dual fluorescence in a series of solvents of varying polarities, starting from toluene to methanol. The dual emission of these dyes correlates well with solvent H-bond basicity, which is connected with the effect of this solvent property on the kinetics of the ESIPT reaction. In addition to their red-shifted absorption and fluorescence, these new derivatives show a larger separation of their two emission bands and a more appropriate range of their intensity ratio than the previously synthesized 3HQs. These properties allow an improved ratiometric evaluation of the local H-bond basicity of unknown environments, which will favor future applications of the new dyes in polymer and biological sciences.  相似文献   

2.
The dynamics of excited-state intramolecular proton transfer (ESIPT) and of relaxation processes in o-tosylaminobenzoic acid (TAC) and o-acetylaminobenzoic acid (AAC) have been studied by femtosecond absorption spectroscopy with a time resolution of 30 fs. The ESIPT characteristic time in the TAC dimer and monomer and in AAC monomer is 50 fs. The excited product of photoinduced proton transfer in the monomer undergoes effective radiationless deactivation with a characteristic time of 30 ps, one of the channels of which is internal rotation followed by intersystem crossing and internal conversion. The product of ESIPT in the TAC dimer deactivates preferentially into the ground state via radiative transition with a time of 291 ps. ESIPT in the AAC dimer is thermodynamically unfavorable and occurs with a low yield.  相似文献   

3.
Cysteine is well-known to be an important biothiol and related to many diseases. However, the in vivo detection of endogenous cysteine still suffers from lacking small-molecule fluorophores with both excitation and emission in the near-infrared (650-900 nm)/shortwave-infrared region. Herein, we report a molecular engineering strategy for shortwave infrared (SWIR, 900-1700 nm) sensing of cysteine, which integrated an excited-state intermolecular proton transfer (ESIPT) building block into the intramolecular charge transfer (ICT) scaffold. The obtained novel fluorophore SH-OH displays a maximum absorption at the NIR region, and emission at the SWIR region. We introduce the cysteine-recognition moiety to SH-OH structure, and demonstrate sensing of endogenous cysteine in living animals, using the SWIR emission as a reliable off-on fluorescence signal. This fluorophore design strategy of cooperation of ICT and ESIPT processes expands the in vivo sensing toolbox for accurate analysis in clinical applications.  相似文献   

4.
5.
Dicarba-closo-dodecaborane (carborane) has received much attention as a building block for supramolecular assemblies and bioactive compounds. Among the carborane isomers, 1,2-dicarba-closo-dodecaborane (o-carborane) has unique chemical properties, including the ability of the o-carborane C-H hydrogens to form H-bonds. We have designed and synthesized 1-(2-methoxyphenyl)-o-carborane 1a to study its ability to form an intramolecular H-bond between the o-carborane C-H hydrogen and various H-bond acceptors both in solution and in the solid state. Intramolecular H-bonding ability in solution was evaluated by means of 1H NMR spectroscopic measurements of the C-H hydrogen signal. The signal of the C-H hydrogen of 1a showed a remarkable downfield shift in CDCl3 and various other solvents, i.e., the shift was almost solvent-independent. We suggest that 1a forms an intramolecular H-bond in these solvents. Crystal structure analysis of 1a showed a C-H?O distance of 2.05 Å and a nearly planar torsion angle C(2)-C(1)-C(7)-C(8) of 6.5°, indicating intramolecular C-H?O H-bond formation in the solid state. The crystal packing of 1a indicates that a supramolecular array is stabilized by cooperative π-π stacking interactions among the methoxyphenyl groups and by hydrophobic interactions of the o-carborane cages. DFT calculations indicate that the strength of the intramolecular H-bond of 1a is about 3.53 kcal/mol. These observations indicate the potential value of o-carborane in supramolecular chemistry and materials chemistry; it should be possible to design novel materials by utilizing both the H-bonding ability of the o-carborane C-H hydrogen and the high hydrophobicity of the o-carborane cage.  相似文献   

6.
We designed and synthesized a simple and readily available fluorescent probe 3 for cysteine (Cys) based on naphthalene derivative. The probe is composed of a new class of aggregation-induced emission enhancement (AIEE) active dye 2 based on excited-state intramolecular proton transfer (ESIPT) and an acrylate group as the Cys recognition unit as well as the ESIPT blocking agent, which can be cut off by Cys from the probe in aqueous solution with mild conditions. The probe had great sensitivity and selectivity for the detection of Cys over homocysteine (Hcy) and glutathione (GSH) with a detection limit of 0.05 µM. In addition, we have successfully applied the probe for bioimaging studies of Cys in living cells, indicating that the probe holds great potential for biological applications.  相似文献   

7.
In the ground state, o-tosylaminobenzoic and o-acetylaminobenzoic acids exist in the form of two rotamers with intramolecular hydrogen bonds N-H...O=C (cis) and N-H...O(OH)-C (trans). In nonpolar solvents, the formation of dimers with hydrogen bonding between carboxyl groups takes place. Efficient barrierless excited state intramolecular proton transfer (ESIPT) occurs along the N-H...O=C hydrogen bond upon excitation of o-tosylaminobenzoic acid. The efficiency of ESIPT in o-acetylaminobenzoic acid is lower because of the low acidity of the substituted amino group.  相似文献   

8.
A turn-on fluorescent probe, based on a water-soluble terphenyl derivative, for the detection of cysteine and homocysteine is reported. The aldehyde groups in the probe play crucial roles in providing reaction with thiol groups in the amino acids, leading to a formation of thiazolidine (from cysteine) or thiazinane ring (from homocysteine). As a result, the new formation of such rings alters the electronic property of the conjugated system in the probe and results in emission enhancement. The probe in aqueous solution exhibits a remarkable increase in its quantum yield upon exposure to cysteine (up to 20-fold) and to homocysteine (up to 700-fold), while slight quenching is observed in the presence of glutathione. Moreover, an investigation on time-resolved fluorescence spectra of the probe in the presence of cysteine and homocysteine reveals potential discriminatory detection of cysteine and homocysteine. Bioimaging of the thiols in live HeLa cells was successfully applied.  相似文献   

9.
Ab initio calculations, including natural charge population and natural resonance theory analyses, have been carried out to study the two-way effects between hydrogen bonds (H-bonds) and the intramolecular resonance effect by using the H-bonded complexes of ring compounds containing the H2N-C=Y moiety (C=Y bond is contained in the six-membered or five-membered rings) with water as models. The amino groups in the four monomers of ring compounds (FAYs, Y represents the heavy atoms in the substituent groups, =CH, =N, =SiH, and =P, respectively) can all serve as H-bond donors (HD) and H-bond acceptors (HA) to form stable H-bonded complexes with water. The HD H-bond and resonance effect enhance each other (positive two-way effects) whereas the HA H-bond and resonance effect weaken each other (negative two-way effects). The resonance effect in FAY(1) (C=Y bond is contained in the six-membered rings) is weaker than that in formamide, and those in FAY(2) and FAY(3) (C=Y bonds are contained in the five-membered rings). The two-way effects between H-bond and resonance effect exist in the H-bonded complexes of ring compounds containing the H2N-C=Y moiety with water.   相似文献   

10.
《中国化学快报》2021,32(10):3057-3060
Intracellular pH is a key parameter related to various biological and pathological processes. In this study, a ratiometric pH fluorescent sensor ABTT was developed harnessing the amino-type excited-state intramolecular proton transfer (ESIPT) process. Relying on whether the ESIPT proceeds normally or not, ABTT exhibited the yellow fluorescence in acidic media, or cyan fluorescence in basic condition. According to the variation, ABTT behaved as a promising sensor which possessed fast and reversible response to pH change without interference from the biological substances, and exported a steady ratiometric signal (I478/I546). Moreover, due to the ESIPT effect, large Stokes shift and high quantum yield were also exhibited in ABTT. Furthermore, ABTT was applied for monitoring the pH changes in living cells and visualizing the pH fluctuations under oxidative stress successfully. These results elucidated great potential of ABTT in understanding pH-dependent physiological and pathological processes.  相似文献   

11.
Ring current effects on resonance-assisted and intramolecularly bridged hydrogen bond protons for 10-hydroxybenzo[h]quinoline 1 and a number of related compounds were calculated and the through-space NMR shieldings (TSNMRS) obtained hereby visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. These calculations revealed that this through-space effect is comparably large (up to 2?ppm) dependent on the position of the intramolecularly bridged OH proton, and therefore, contribute considerably to the chemical shift of the latter making it questionable to use δ(OH)/ppm in the estimation of intramolecular hydrogen bond strength without taking this into account. Furthermore, the anisotropy effects of additional groups on the aromatic moiety (e.g. the carbonyl group in salicylaldehyde or in o-hydroxyacetophenone of ca. 0.6?ppm deshielding) should also be considered. These through-space effects need to be taken into account when using OH chemical shifts to estimate hydrogen bond strength.  相似文献   

12.
Formation of both sila-functional and carbo-functional phenoxasilins from diphenyl ether and o,o′-dibromodiphenyl ether precursors is described. Tricyclic oxasilepins are formed from o,o′-dibromobenzylphenyl ether by metallation with n-BuLi followed by reaction with dichlorosilanes as well as by ring expansion of an appropriate phenoxasilin. Reactions at the silicon center and at the ring methylene carbon of the oxasilepins are reported, as well as attempts to generate oxasilocins.  相似文献   

13.
The hydrogen bonding interactions between cysteine and N,N-dimethylformamide (DMF) were studied at the extended hybrid functional DFT-X3LYP/6-311++G(d,p) level regarding their geometries, energies, vibrational frequencies, and topological features of the electron density. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses were employed to elucidate the interaction characteristics in the complexes. The results show that two intermolecular hydrogen bonds (H-bonds) are formed in one complex except few complexes with one intermolecular H-bond. The H-bonds involving O atom of DMF as H-bond acceptor usually are red-shifting H-bonds, while the blue-shifting H-bond usually involve methyl of DMF or methenyl of cysteine moiety as H-bond donors. Both hydrogen bonding interaction and structural deformation play important roles in the relative stabilities of the complexes. Due to the π-bond cooperativity, the strongest H-bond is formed between hydroxyl of cysteine moiety and O atom of DMF, however, the serious deformation counteract the hydrogen bonding interaction to a great extent. The complex involves a stronger hydrogen bonding interaction as well as the smaller deformation is the most stable one. The electron density (ρb) as well as its Laplacian (∇2ρb) at the H-bond critical point predicted by QTAIM is strongly correlated with the H-bond structural parameter (δR H···Y) and the second-perturbation energies E(2) in the NBO scheme.  相似文献   

14.
15.
An activated carbon-MnO2 catalyst was prepared and used for chlorine dioxide catalytic oxidation of simulated o-chlorophenol wastewater. The COD removal efficiencies of chemical oxidation and catalytic oxidation are 28.6 and 93.5%, respectively. The COD removal efficiency of catalytic oxidation is greater than that of chemical oxidation at the same treatment condition. By using UV?CVis and online FTIR analysis technique, the intermediates during the degradation process were obtained. The benzene ring in o-chlorophenol was degraded into quinone and carboxylic acid, and finally changed into carbon dioxide and water during the catalytic oxidation. The degradation reaction mechanism of o-chlorophenol by chlorine dioxide catalytic oxidation was proposed based upon the experiment evidence.  相似文献   

16.
Treatment of 2 equiv of indole-3-aldehyde with o, m, p-xylyl, 2,5-dimethoxy-p-xylyl dibromides and 4,4′-bis(bromomethyl)-1,1′-biphenyl gave the bisalkylated products, which underwent McMurry coupling with low valent titanium to give indolophanes. Various cis-stilbenophanes with m-terphenyl building blocks were also synthesized by application of the McMurry coupling technique.  相似文献   

17.
The stoichiometric coefficients of inhibition and rate constants for the reaction of several terpenephenols (isocamphyl substituted phenols) with ethylbenzene peroxy radicals were measured. Their reactivity was found to increase as the number of alkyl substituents grew and decreased with an o-alkoxyl compared with o-alkyl substituent because of the formation of an intramolecular H-bond. In spite of similar antiradical activities of terpenephenols with isocamphyl and isobornyl substituents, the reactivities of phenoxyl radicals formed from them in the interaction with sterically hindered phenol molecules are substantially different. They are higher for isocamphylphenols with substituents turned with respect to the aromatic ring plane.  相似文献   

18.
Wei Chen  Xuedan Wu  Lin Pu 《Tetrahedron letters》2017,58(18):1781-1783
A water soluble binaphthyl-based aldehyde was designed and synthesized. This compound in combination with Zn(OAc)2 is found to exhibit greatly enhanced fluorescence in the presence of GSH in aqueous solution (pH = 7.5) but give little or no fluorescence enhancement in the presence of cysteine, homocysteine and other amino acids. This remarkable selectivity makes this probe potentially useful for the analysis of the biologically important GSH.  相似文献   

19.
A new fluorescent probe 1, N-butyl-4, 5-(p-aldehyde)phenyl-1,8-naphthalimide, was designed and synthesized for the determination of the cysteine (Cys). Upon addition of Cys, the emission of 1 was enhanced with about 25 nm red-shift in the emission maximum (from 455 to 480 nm), accompanied with the fluorescent color change from blue to cyan, which was attributed to the reaction of the aldehyde groups in 1 with cysteine to form very stable thiazolidines derivative. Compound 1 was highly selective for cysteine detection without the interference of other amino acids and can be used for bioimaging of Cys.  相似文献   

20.
The interaction and colorimetric sensing properties of receptor 1, tris(3-methylindole-2-yl)methene as the perchlorate salt, with amino acids in aqueous MeCN at neutral pH were investigated using UV-vis spectroscopic techniques. Specifically, receptor 1 behaves as a colorimetric probe for selective and sensitive detection of cysteine (Cys)/homocysteine (Hcy) based on the nucleophilic addition reaction between the sulphydryl group of Cys/Hcy and the meso carbon-carbon double bond of receptor 1, leading to clear color change from violet to colorless. A more quantitative determination for Cys/Hcy was preliminary performed by flow injection analysis (FIA) coupled with spectrophotometry. The selective binding ability of receptor 1 toward Cys/Hcy has also been evaluated by electrochemical techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号