首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Co‐MOF poly[[diaqua{μ4‐1,1,2,2‐tetrakis[4‐(1H‐1,2,4‐triazol‐1‐yl)phenyl]ethylene‐κ4N:N′:N′′:N′′′}cobalt(II)] benzene‐1,4‐dicarboxylic acid benzene‐1,4‐dicarboxylate], {[Co(C34H24N12)(H2O)2](C8H4O4)·C8H6O4}n or {[Co(ttpe)(H2O)2](bdc)·(1,4‐H2bdc)}n, (I), was synthesized by the hydrothermal method using 1,1,2,2‐tetrakis[4‐(1H‐1,2,4‐triazol‐1‐yl)phenyl]ethylene (ttpe), benzene‐1,4‐dicarboxylic acid (1,4‐H2bdc) and Co(NO3)2·6H2O, and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, powder X‐ray diffraction (PXRD), luminescence, optical band gap and valence band X‐ray photoelectron spectroscopy (VB XPS). Co‐MOF (I) shows a (4,4)‐connected binodal two‐dimensional topology with a point symbol of {44·62}{44·62}. The two‐dimensional networks capture free neutral 1,4‐H2bdc molecules and bdc2? anions, and construct a three‐dimensional supramolecular architecture via hydrogen‐bond interactions. MOF (I) is a good photocatalyst for the degradation of methylene blue and rhodamine B under visible‐light irradiation and can be reused at least five times.  相似文献   

2.
Two novel complexes [Cu L 2(MeOH)] ( 1 )and [Ag2 L (H L )2(MeOH)] ( 2 ) ( L = 5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐carboxylic acid) were synthesized and characterized by elemental analysis, IR and X‐ray diffraction. Complex 1 is a mononuclear structure; the molecules were assembled into an infinite 2–D supramolecular by the C–H···O weak interactions. Complex 2 is a centrosymmetric dinuclear structure with bis(unidentate) carboxylato co‐ordination mode, and the molecules were assembled into 2–D layers by C–H···O and O–H···O weak interactions.  相似文献   

3.
The work reported was aimed at a simple method to improve the catalytic activity of Mo/HMCM‐22 in methane aromatization. The catalysts were characterized using X‐ray diffraction, scanning electron microscopy, N2 adsorption–desorption, NH3 temperature‐programmed desorption, infrared spectra of pyridine adsorption, X‐ray photoelectron spectroscopy and thermogravimetric analysis. Physicochemical measurements indicated that Mo species with smaller size in HMCM‐22 would sublimate more easily and form Mo species at the atomic/molecular level and then interact well with the internal Brønsted acid sites to form Mo–O–Al active species. Catalytic results confirmed that nano‐MoO3‐modified HMCM‐22 showed higher methane conversion and aromatics yield (13.1 versus 8.9%) than commercial MoO3‐modified HMCM‐22 (11.0 versus 7.5%). In addition, nano‐MoO3‐modified HMCM‐22 showed better durability compared with commercial MoO3‐modified MCM‐22. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We report the synthesis, structural characterization, and porous properties of two isomeric supramolecular complexes of ([Cd(NH2?bdc)(bphz)0.5]?DMF?H2O}n (NH2?bdc=2‐aminobenzenedicarboxylic acid, bphz=1,2‐bis(4‐pyridylmethylene)hydrazine) composed of a mixed‐ligand system. The first isomer, with a paddle‐wheel‐type Cd2(COO)4 secondary building unit (SBU), is flexible in nature, whereas the other isomer has a rigid framework based on a μ‐oxo‐bridged Cd2(μ‐OCO)2 SBU. Both frameworks are two‐fold interpenetrated and the pore surface is decorated with pendant ?NH2 and ?N?N? functional groups. Both the frameworks are nonporous to N2, revealed by the type II adsorption profiles. However, at 195 K, the first isomer shows an unusual double‐step hysteretic CO2 adsorption profile, whereas the second isomer shows a typical type I CO2 profile. Moreover, at 195 K, both frameworks show excellent selectivity for CO2 among other gases (N2, O2, H2, and Ar), which has been correlated to the specific interaction of CO2 with the ?NH2 and ?N?N? functionalized pore surface. DFT calculations for the oxo‐bridged isomer unveiled that the ?NH2 group is the primary binding site for CO2. The high heat of CO2 adsorption (ΔHads=37.7 kJ mol?1) in the oxo‐bridged isomer is realized by NH2???CO2/aromatic π???CO2 and cooperative CO2???CO2 interactions. Further, postsynthetic modification of the ?NH2 group into ?NHCOCH3 in the second isomer leads to a reduced CO2 uptake with lower binding energy, which establishes the critical role of the ?NH2 group for CO2 capture. The presence of basic ?NH2 sites in the oxo‐bridged isomer was further exploited for efficient catalytic activity in a Knoevenagel condensation reaction.  相似文献   

5.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

6.
Three sterically crowded peri‐substituted naphthalene phosphines, Nap[PPh2][ER] (Nap=naphthalene‐1,8‐diyl; ER=SEt, SPh, SePh) 1–3 , which contain phosphorus and chalcogen functional groups at the peri positions have been prepared. Each phosphine reacts to form a complete series of PV chalcogenides Nap[P(E′)(Ph2)(ER)] (E′=O, S, Se). The novel compounds were fully characterised by using X‐ray crystallography and multinuclear NMR spectroscopy, IR spectroscopy and MS. X‐ray data for 1 , 2 , n O , n S , n Se (n=1–3) are compared. Eleven molecular structures have been analysed by naphthalene ring torsions, peri‐atom displacement, splay angle magnitude, X???E interactions, aromatic ring orientations and quasi‐linear arrangements. An increase in the congestion of the peri region following the introduction of heavy chalcogen atoms is accompanied by a general increase in naphthalene distortion. P???E distances increase for molecules that contain bulkier atoms at the peri positions and also when larger chalcogen atoms are bound to phosphorus. The chalcogenides adopt similar conformations that contain a quasi‐linear E???P? C fragment, except for 3 O , which displays a twist‐axial‐twist conformation resulting in the formation of a linear O???Se? C alignment. Ab initio MO calculations performed on 2 O , 3 O , 3 S and 3 Se reveal Wiberg bond index values of 0.02 to 0.04, which indicates only minor non‐bonded interactions; however, calculations on radical cations of 3 O , 3 S and 3 Se reveal increased values (0.14–0.19).  相似文献   

7.
The adsorption behaviour of the CdII–MOF {[Cd(L)2(ClO4)2]·H2O ( 1 ), where L is 4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole, for butan‐2‐one was investigated in a single‐crystal‐to‐single‐crystal (SCSC) fashion. A new host–guest system that encapsulated butan‐2‐one molecules, namely poly[[bis{μ3‐4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole}cadmium(II)] bis(perchlorate) butanone sesquisolvate], {[Cd(C24H18N6)2](ClO4)2·1.5C4H8O}n, denoted C4H8O@Cd‐MOF ( 2 ), was obtained via an SCSC transformation. MOF 2 crystallizes in the tetragonal space group P43212. The specific binding sites for butan‐2‐one in the host were determined by single‐crystal X‐ray diffraction studies. N—H…O and C—H…O hydrogen‐bonding interactions and C—H…π interactions between the framework, ClO4? anions and guest molecules co‐operatively bind 1.5 butan‐2‐one molecules within the channels. The adsorption behaviour was further evidenced by 1H NMR, IR, TGA and powder X‐ray diffraction experiments, which are consistent with the single‐crystal X‐ray analysis. A 1H NMR experiment demonstrates that the supramolecular interactions between the framework, ClO4? anions and guest molecules in MOF 2 lead to a high butan‐2‐one uptake in the channel.  相似文献   

8.
Four novel 1,8‐disubstituted naphthalene derivatives 4 – 7 that contain chalcogen atoms occupying the peri positions have been prepared and fully characterised by using X‐ray crystallography, multinuclear NMR spectroscopy, IR spectroscopy and MS. Molecular distortion due to noncovalent substituent interactions was studied as a function of the bulk of the interacting chalcogen atoms and the size and nature of the alkyl group attached to them. X‐ray data for 4 – 7 was compared to the series of known 1,8‐bis(phenylchalcogeno)naphthalenes 1 – 3 , which were themselves prepared from novel synthetic routes. A general increase in the E???E′ distance was observed for molecules containing bulkier atoms at the peri positions. The decreased S???S distance from phenyl‐ 1 and ethyl‐ 4 analogues is ascribed to a weaker chalcogen lone pair–lone pair repulsion acting in the ethyl analogue due to the presence of two equatorial S(naphthyl) ring conformations. Two novel peri‐substituted naphthalene sulfoxides of 1 , Nap(O?SPh)(SPh) 8 and Nap(O?SPh)2 9 , which contain different valence states of sulfur, were prepared and fully characterised by using X‐ray crystallography and multinuclear NMR spectroscopy, IR spectroscopy and MS. Molecular structures were analysed by using naphthalene ring torsions, peri‐atom displacement, splay angle magnitude, S???S interactions, aromatic ring orientations and quasi‐linear O?S???S arrangements. The axial S(naphthyl) rings in 8 and 9 are unfavourable for S???S contacts due to stronger chalcogen lone pair–lone pair repulsion. Although quasi‐linear O?S???S alignments suggest attractive interaction is conceivable, analysis of the B3LYP wavefunctions affords no evidence for direct bonding interactions between the S atoms.  相似文献   

9.
The effect of weak base modification on the catalytic performance of ZSM‐5 catalyst for conversion of methanol to aromatics was investigated. The catalysts were characterized using X‐ray diffraction, X‐ray fluorescence, N2 adsorption–desorption, NH3 temperature‐programmed desorption, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetry. The results showed that catalysts treated with weak base (NaHCO3, Na2CO3 and NH3⋅H2O) exhibited a pore structure with interconnected micropores and mesopores. The existence of mesopores was beneficial for improving the diffusion of reactants and products, and the coke deposition resistance capacity of treated catalysts was enhanced greatly. Meanwhile, compared to traditional ZSM‐5 zeolite, the ratio of Brønsted to Lewis (B/L) acid sites of ZSM‐5/NH3⋅H2O (B/L = 7.35) zeolite slightly increased but the amount of acid sites reduced, while those of ZSM‐5/NaHCO3 (B/L = 0.127) and ZSM‐5/Na2CO3 (B/L = 0.107) significantly reduced. Further, the catalyst treated with NH3⋅H2O solution was evaluated in the methanol to aromatics reaction and led to an enhanced aromatization reaction rate. The liquid hydrocarbons product distribution exhibited higher aromatic hydrocarbons yield (56.12%) and selectivity (40.28%) of benzene, toluene and xylene (BTX) with isoparaffin content reducing to 26.17%, which could be explained by appropriate B/L acid sites ratio, higher pore volumes and higher surface area.  相似文献   

10.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

11.
Mixed‐ligand metal–organic frameworks Al(bdc‐OH)x(bdc‐NH2)1?x (H2bdc‐NH2=aminoterepthalic acid, H2bdc‐OH=hydroxyterephthalic acid) were synthesized and their water adsorption behavior and proton conductivity were investigated. All obtained compounds were isostructural to MIL‐53 (MIL=Materials of Institut Lavoisier) according to XRD measurements under ambient humidity conditions, and were also found to be single phase across the whole mixing ratio from the XRD measurements under humidified conditions. This result clearly shows that all compounds are a solid‐solution‐type mixture of ligands. MIL‐53‐NH2 adsorbs one water molecule per formula with humidification whereas MIL‐53‐OH adsorbs five water molecules. The mixing ratio of the ligands in Al(OH)(bdc‐OH)x(bdc‐NH2)1?x affected the gate‐opening pressure for water adsorption and total water uptake. Proton conductivity of these compounds largely depends on the adsorbed amount of water, which indicates that the proton conductivity of these compounds depends strongly on the hydrogen‐bond network of the conducting media.  相似文献   

12.
13.
Three metal coordination polymers [Zn(bdc)(L)(H2O)]n ( 1 ), [Co(pta)(L)(H2O)2]n ( 2 ), and [Cd(tda)(L)(H2O)]n ( 3 ) [H2bdc = 1,2‐benzene dicarboxylate acid, H2pta = terephthalic acid, H2tda = 2,5‐thiophenedicarboxylic acid, L = 3,5‐bis(imidazole‐1‐yl)pyridine] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a three‐dimensional (3D) structure with cco topology with the symbol 65 · 8, whereas complex 2 features a 3D structure with cds topology with the symbol 65 · 8. Complex 3 has a 2D network constructed by the cadmium atoms bridged through the ligands tda and L. Their X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, their luminescent properties were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the 3D networks.  相似文献   

14.
Cardiosulfa is a biologically active sulfonamide molecule that was recently shown to induce abnormal heart development in zebrafish embryos through activation of the aryl hydrocarbon receptor (AhR). The present report is a systematic study of solid‐state forms of cardiosulfa and its biologically active analogues that belong to the N‐(9‐ethyl‐9H‐carbazol‐3‐yl)benzene sulfonamide skeleton. Cardiosulfa (molecule 1 ; R1=NO2, R2=H, R3=CF3), molecule 2 (H, H, CF3), molecule 3 (CF3, H, H), molecule 4 (NO2, H, H), molecule 5 (H, CF3, H), and molecule 6 (H, H, H) were synthesized and subjected to a polymorph search and solid‐state form characterization by X‐ray diffraction, differential scanning calorimetry (DSC), variable‐temperature powder X‐ray diffraction (VT‐PXRD), FTIR, and solid‐state (ss) NMR spectroscopy. Molecule 1 was obtained in a single‐crystalline modification that is sustained by N? H???π and C? H???O interactions but devoid of strong intermolecular N? H???O hydrogen bonds. Molecule 2 displayed a N? H???O catemer C(4) chain in form I, whereas a second polymorph was characterized by PXRD. The dimorphs of molecule 3 contain N? H???π and C? H???O interactions but no N? H???O bonds. Molecule 4 is trimorphic with N? H???O catemer in form I, and N? H???π and C? H???O interactions in form II, and a third polymorph was characterized by PXRD. Both polymorphs of molecule 5 contain the N? H???O catemer C(4) chain, whereas the sulfonamide N? H???O dimer synthon R22(8) was observed in polymorphs of 6 . Differences in the strong and weak hydrogen‐bond motifs were correlated with the substituent groups, and the solubility and dissolution rates were correlated with the conformation in the crystal structure of 1 , 2 , 3 , 4 , 5 , 6 . Higher solubility compounds, such as 2 (10.5 mg mL?1) and 5 (4.4 mg mL?1), adopt a twisted confirmation, whereas less‐soluble 1 (0.9 mg mL?1) is nearly planar. This study provides practical guides for functional‐group modification of drug lead compounds for solubility optimization.  相似文献   

15.
A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR, X‐ray photoelectron spectroscopy and single‐crystal X‐ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIII centre is seven‐coordinated by three O atoms and four N atoms. The coordination geometry of each BiIII atom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembled via O—H...O hydrogen bonds, resulting in the formation of a three‐dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid‐to‐centroid distances of 3.461 (4) and 3.641 (4) Å.  相似文献   

16.
A series of eight 1‐halo‐8‐(alkylchalcogeno)naphthalene derivatives ( 1 – 8 ; halogen=Br, I; alkylchalcogen=SEt, SPh, SePh, TePh) containing a halogen and a chalcogen atom occupying the peri positions have been prepared and fully characterised by using X‐ray crystallography, multinuclear NMR spectroscopy, IR spectroscopy and MS. Naphthalene distortion due to non‐covalent substituent interactions was studied as a function of the bulk of the interacting chalcogen atoms and the size and nature of the alkyl group attached to them. X‐ray data for 1 , 2 , 4 and 5 – 8 were compared. Molecular structures were analysed in terms of naphthalene ring torsions, peri‐atom displacement, splay angle magnitude, X???E interactions, aromatic ring orientations and quasi‐linear X???E? C arrangements. A general increase in the X???E distance was observed for molecules that contain bulkier atoms at the peri positions. The I???S distance of 4 is comparable with the I???Te distance of 8 , and is ascribed to a stronger lone pair–lone pair repulsion due to the presence of an axial S(naphthyl) ring conformation. Density functional theory (B3LYP) calculations performed on 5 – 8 revealed Wiberg bond index values of 0.05–0.08, which indicate minor interactions taking place between the non‐bonded atoms in these compounds.  相似文献   

17.
The synthesis and characterization of two isoreticular metal–organic frameworks (MOFs), {[Cd(bdc)(4‐bpmh)]}n?2 n(H2O) ( 1 ) and {[Cd(2‐NH2bdc)(4‐bpmh)]}n?2 n(H2O) ( 2 ) [bdc=benzene dicarboxylic acid; 2‐NH2bdc=2‐amino benzene dicarboxylic acid; 4‐bpmh=N,N‐bis‐pyridin‐4‐ylmethylene‐hydrazine], are reported. Both compounds possess similar two‐fold interpenetrated 3D frameworks bridged by dicarboxylates and a 4‐bpmh linker. The 2D Cd‐dicarboxylate layers are extended along the a‐axis to form distorted square grids which are further pillared by 4‐bpmh linkers to result in a 3D pillared‐bilayer interpenetrated framework. Gas adsorption studies demonstrate that the amino‐functionalized MOF 2 shows high selectivity for CO2 (8.4 wt % 273 K and 7.0 wt % 298 K) over CH4, and the uptake amounts are almost double that of non‐functional MOF 1 . Iodine (I2) adsorption studies reveal that amino‐functionalized MOF 2 exhibits a faster I2 adsorption rate and controlled delivery of I2 over the non‐functionalized homolog 1 .  相似文献   

18.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

19.
《中国化学会会志》2017,64(9):1041-1047
Activated carbons with a high mesoporous structure were prepared by a one‐stage KOH activation process without the assistance of templates and further used as adsorbents for CO2 capture. The physical and chemical properties as well as the pore structures of the resulting mesoporous carbons were characterized by N2 adsorption isotherms, scanning electron microscopy (SEM ), X‐ray diffraction (XRD ), Raman spectroscopy, and Fourier transform infrared (FTIR ) spectroscopy. The activated carbon showed greater specific surface area and mesopore volume as the activation temperature was increased up to 600°C, showing a uniform pore structure, great surface area (up to ~815 m2/g), and high mesopore ratio (~55%). The activated sample exhibited competitive CO2 adsorption capacities at 1 atm pressure, reaching 2.29 and 3.4 mmol/g at 25 and 0°C, respectively. This study highlights the potential of well‐designed mesoporous carbon as an adsorbent for CO2 removal and widespread gas adsorption applications.  相似文献   

20.
A new three‐dimensional (3D) porous framework [Zn(INAIP)] · DMA · H2O ( 1 ) [INAIP = 5‐(isonicotinamido)isophthalate, DMA = N,N′‐dimethylacetamide] was synthesized by solvothermal methods and characterized by single‐crystal and powder X‐ray diffraction, as well as thermogravimetric analysis. The results of X‐ray diffraction analyses revealed that complex 1 has an unusual 3D architecture with the (3,6)‐connected rutile ( rtl ) topology. The adsorption behavior shows that compound 1 exhibits selective adsorptions of CO2 over N2 after the removal of the solvent molecules within the pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号