首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
A cyclohexyl‐based POCOP pincer ligand (POCOP=cis‐1,3‐bis(di‐tert‐butylphosphinito)cyclohexyl) cyclometalates with nickel to generate a series of new POCOP‐supported NiII complexes, including the halide, hydride, methyl, and phenyl species. trans‐[NiCl{cis‐1,3‐bis(di‐tert‐butylphosphinito)cyclohexane}], [(POCOP)NiCl] ( 1 a ) and the analogous bromide complex ( 1 b ) were synthesized and fully characterized by NMR spectroscopy and X‐ray crystallography. Cyclic voltammetry measurements of 1 a and 1 b alongside their bis(phosphine) analogues [(PCP)NiCl] ( 2 a ) and [(PCP)NiCl] ( 2 a ) (PCP=cis‐1,3‐bis(di‐tert‐butylphosphino)cyclohexyl) indicate a reduced electron density at the metal center upon introducing electron‐withdrawing oxygen atoms in the pincer arms. The methyl [(POCOP)NiMe] ( 3 ) and phenyl [(POCOP)NiPh] ( 4 ) complexes were formed from 1 a by reaction with the corresponding organolithium reagents. 1 a also reacts with LiAlH4 to give the hydride complex [(POCOP)NiH] ( 5 ). The methyl complex 3 reacts with phenyl acetylene to give the acetylide complex [(POCOP)NiCCPh] ( 6 ). The reactivity of compounds 3 – 5 towards CO2 was studied. The hydride complex 5 and the methyl complex 3 both underwent CO2 insertion to form the formate species [(POCOP)NiOCOH] ( 7 ) and acetate species [(POCOP)NiOCOCH3] ( 8 ), respectively, although with a higher barrier of insertion in the latter case. Compound 4 was unreactive towards CO2 even at elevated temperatures. Complexes 3 – 8 were all characterized by NMR spectroscopy and X‐ray crystallography.  相似文献   

2.
The mechanism of copper‐mediated Sonogashira couplings (so‐called Stephens–Castro and Miura couplings) is not well understood and lacks clear comprehension. In this work, the reactivity of a well‐defined aryl‐CuIII species ( 1 ) with p‐R‐phenylacetylenes (R=NO2, CF3, H) is reported and it is found that facile reductive elimination from a putative aryl‐CuIII‐acetylide species occurs at room temperature to afford the Caryl?Csp coupling species ( IR ), which in turn undergo an intramolecular reorganisation to afford final heterocyclic products containing 2H‐isoindole ( P , P , PHa ) or 1,2‐dihydroisoquinoline ( PHb ) substructures. Density Functional Theory (DFT) studies support the postulated reductive elimination pathway that leads to the formation of C?Csp bonds and provide the clue to understand the divergent intramolecular reorganisation when p‐H‐phenylacetylene is used. Mechanistic insights and the very mild experimental conditions to effect Caryl?Csp coupling in these model systems provide important insights for developing milder copper‐catalysed Caryl?Csp coupling reactions with standard substrates in the future.  相似文献   

3.
This contribution describes the reactivities of CO2, CO, O2, and ArNC with the pincer‐type complexes [(κPCP′‐POCOP)NiX] (POCOP=(R2POCH2)2CH; R=iPr; X=OSiMe3, NArH; Ar=2,6‐iPr2C6H3). Reaction of the amido derivative with CO2 and CO leads to a simple insertion into the Ni?N bond to give stable carbamate and carbamoyl derivatives, respectively, the pincer ligand backbone remaining intact in both cases. In contrast, the analogous reactions with the siloxide derivative produced kinetically labile insertion products that either revert to the starting material (in the case of CO2) or react further to give the mixed‐valent, dinickel species [(POCOP)NiII{μ,κOPP′‐OCOCH(CH2CH2OPR2)2}Ni0(CO)2]. The zero‐valent center in the latter compound is ligated by a new ligand arising from transformation of the POCOP ligand backbone. The carbonylation and carboxylation of the siloxido derivative also produced minor quantities of a side‐product identified as the trinickel species, [{(η3‐allyl)Ni(μOP‐R2PO)2}2Ni], arising from total dismantling of the POCOP ligand. Similar reactivities were observed with isonitrile, ArNC: reaction with the siloxido derivative resulted in a complex sequence of steps involving initial insertion, a 1,3‐hydrogen shift, and an Arbuzov rearrangement to give [Ni(CNAr)4] and a methacrylamide based on fragments of the POCOP ligand. Oxygenation of the amido and siloxido derivatives led to the phosphinate derivative, [(POCOP)Ni(OP(O)R2)], arising from oxidative transformation of the original ligand frame; the reaction with the Ni‐NHAr derivative also gave ArHNP(O)R2 through a complex N?P bond‐forming reaction.  相似文献   

4.
Diversification of the βcarboline skeleton has been demonstrated to assemble a βcarboline library starting from the tetrahydro‐βcarboline framework. This strategy affords feasible access to heteroaryl‐, aryl‐, alkenyl‐, or alkynyl‐substituted β‐carbolines at the C1, C3, or C8 position through three categorically different types of transition‐metal‐catalyzed C?C bond‐forming reactions, in the presence of multiple potentially reactive positions. These site‐selective functionalizations include; 1) the Cu‐catalyzed C1/C3‐selective decarboxylative C?C and C?Csp coupling of hexahydro‐βcarboline‐3‐carboxylic acid with a C?H bond of a heteroarene or terminal alkyne; 2) the chelation‐assisted Pd‐catalyzed C1/C8‐selective C?H arylation of hexahydro‐β‐carboline with aryl boron reagents; and 3) the chelation‐assisted Pd‐catalyzed C1/C3‐selective oxidative C?H/C?H cross‐coupling of βcarboline‐N‐oxide with arenes, heteroarenes, or alkenes. The saturated structural feature of the hexahydro‐βcarboline framework can increase reactivity and control site selectivity. The robustness of these approaches has been demonstrated through the synthesis of hyrtioerectine analogues and perlolyrine. We believe that these strategies could provide inspiration for late‐stage diversifications of bioactive core scaffolds.  相似文献   

5.
[RuCl(arene)(μ‐Cl)]2 dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis‐ and tris(pyrazolyl)borate ligands [Na(Bp)], [Tl(Tp)], and [Tl(TpiPr, 4Br)]. Mononuclear neutral complexes [RuCl(arene)(κ2‐Bp)] ( 1 : arene=p‐cymene (cym); 2 : arene=hexamethylbenzene (hmb); 3 : arene=benzene (bz)), [RuCl(arene)(κ2‐Tp)] ( 4 : arene=cym; 6 : arene=bz), and [RuCl(arene)(κ2‐TpiPr, 4Br)] ( 7 : arene=cym, 8 : arene=hmb, 9 : arene=bz) have been always obtained with the exception of the ionic [Ru2(hmb)2(μ‐Cl)3][Tp] ( 5′ ), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru(CH3OH)(cym)(κ2‐Bp)][X] ( 10 : X=PF6, 12 : X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)(κ2‐Bp)] ( 11 ) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1 – 12 have been characterized by analytical and spectroscopic data (IR, ESI‐MS, 1H and 13C NMR spectroscopy). The structures of the thallium and calcium derivatives of ligand Tp, [Tl(Tp)] and [Ca(dmso)6][Tp]2 ? 2 DMSO, of the complexes 1 , 4 , 5′ , 6 , 11 , and of the decomposition product [RuCl(cym)(HpziPr, 4Br)2][Cl] ( 7′ ) have been confirmed by using single‐crystal X‐ray diffraction. Electrochemical studies showed that 1 – 9 and 11 undergo a single‐electron RuII→RuIII oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron‐donor characters of the bis‐ and tris(pyrazol‐1‐yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever EL ligand parameter for Bp, Tp, and TpiPr, 4Br. Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal‐centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the μ3‐binuclear complex 5′ (instead of the mononuclear 5 ) is accounted for by the low thermodynamic stability of the latter species due to steric reasons.  相似文献   

6.
Thermally doped nitrogen atoms on the sp2‐carbon network of reduced graphene oxide (rGO) enhance its electrical conductivity. Atomic structural information of thermally annealed graphene oxide (GO) provides an understanding on how the heteroatomic doping could affect electronic property of rGO. Herein, the spectroscopic and microscopic variations during thermal graphitization from 573 to 1 373 K are reported in two different rGO sheets, prepared by thermal annealing of GO (rGOtherm) and post‐thermal annealing of chemically nitrogen‐doped rGO (post‐therm‐rGO). The spectroscopic transitions of rGO in thermal annealing ultimately showed new oxygen‐functional groups, such as cyclic edge ethers and new graphitized nitrogen atoms at 1 373 K. During the graphitization process, the microscopic evolution resolved by scanning tunneling microscopy (STM) produced more wrinkled surface morphology with graphitized nanocrystalline domains due to atomic doping of nitrogen on a post‐therm‐rGO sheet. As a result, the post‐therm‐rGO‐containing nitrogen showed a less defected sp2‐carbon network, resulting in enhanced conductivity, whereas the rGOtherm sheet containing no nitrogen had large topological defects on the basal plane of the sp2‐carbon network. Thus, our investigation of the structural evolution of original wrinkles on a GO sheet incorporated into the graphitized N‐doped rGO helps to explain how the atomic doping can enhance the electrical conductivity.  相似文献   

7.
8.
The first well‐defined lutetacyclopentadienes are synthesised from pentamethylcyclopentadienyl lithium (Cp*Li), 1,4‐dilithio‐1,3‐butadienes, and LuCl3. The lutetacyclopentadiene shows excellent reactivity towards some small molecules, such as pivalaldehyde, Se, carbon dioxide, and isonitrile to efficiently construct 3‐, 5‐, 7‐, 8‐, and 9‐membered rare‐earth metallacycles. Both monoinsertion and double‐insertion of two Lu?C bonds are observed. Specially, the reaction between lutetacyclopentadiene and isonitrile afforded [3,5,5]‐fused metallacycles. The distinguished reactivity can be attributed to the highly ionic character and the cooperative reactivity of two Lu?C bonds.  相似文献   

9.
Dramatic rate enhancement of reductive elimination of [Ar‐Pd‐C] was observed in the presence of a phosphine/electron‐deficient olefin ligand. Through systematic kinetic investigations of the Negishi coupling of ethyl 2‐iodobenzoate with alkylzinc chlorides (see scheme), the rate constants for reductive elimination of [Ar‐Pd‐C] were determined to be greater than 0.3 s?1, which is about four or five orders of magnitude greater than values reported previously.

  相似文献   


10.
In spite of the recent success in crystallizing several G‐protein‐coupled receptors (GPCRs), a comprehensive biophysical characterization of these molecules under physiological conditions also requires the study of the molecular dynamics of these proteins. The molecular mobility of the human neuropeptide Y receptor type 2 reconstituted into dimyristoylphosphatidylcholine (DMPC) membranes was investigated by means of solid‐state NMR spectroscopy. Static 15N NMR spectra show that the receptor performs axially symmetric motions in the membrane, and several residues undergo large amplitude fluctuations. This was confirmed by quantitative measurements of the motional 1H,13C order parameter of the CH, CH2, and CH3 groups. In directly polarized 13C NMR experiments, these order parameters showed astonishingly low values of SCH=0.55, S=0.33, and S=0.17, which corresponds to segmental amplitudes of approximately 50° in the backbone and approximately 50–60° in the side chain. At physiological temperature, 2H NMR spectra of the deuterated receptor showed a narrow component that is indicative of molecular order parameters of S≤0.3 superimposed with a very broad spectrum that could stem from the transmembrane α‐helices. These results suggest that the crystal structures of GPCRs only represent a static snapshot of these highly mobile molecules, which undergo significant structural fluctuations with relatively large amplitudes in a liquid‐crystalline membrane at physiological temperature.  相似文献   

11.
First‐order rate constants kw for the reactions of a series of donor‐substituted triphenylmethylium (tritylium) ions with water in aqueous acetonitrile have been determined photometrically at 20 °C using stopped‐flow and laser‐flash techniques. The rate constants follow the linear free energy relationship log k(20 °C)=s(N+E). The reactivities kw of the methyl‐ and methoxy‐substituted tritylium ions towards water correlate linearly with the corresponding pK values with a Leffler–Hammond coefficient α=δΔG/δΔG0 of 0.62. The amino‐substituted compounds react more slowly than expected from the correlation of the less stabilized systems. Quantum chemical calculations of tritylium ions and the corresponding triarylmethanols and 1,1,1‐triarylethanes have been performed at the MP2(FC)/6‐31+G(2d,p)//B3LYP/6‐31G(d,p) level. The calculated gas‐phase hydroxide and methyl anion affinities of the tritylium ions correlate linearly with a slope of unity, indicating that the relative anion affinities do not depend on the nature of the anion. The pK values of the methyl‐ and methoxy‐substituted tritylium ions correlate linearly with the calculated gas‐phase hydroxide affinities, and the slope of this correlation shows that the differences in carbocation stabilities in the gas phase are attenuated to 66 % in solution. Mono‐ and bis(dimethylamino)‐substituted derivatives deviate from this correlation; their pK values are higher than expected from their calculated gas‐phase hydroxide affinities, which is explained by the extraordinary solvation of unsymmetrically amino‐substituted tritylium ions. Complete free‐energy profiles for the solvolyses of substituted trityl benzoates in 90:10 (v/v) acetonitrile/water have been constructed.  相似文献   

12.
The bis(ethylene) IrI complex [TpIr(C2H4)2] ( 1 ; Tp=hydrotris(3,5‐dimethylpyrazolyl)borate) reacts with two equivalents of aromatic or aliphatic aldehydes in the presence of one equivalent of dimethyl acetylenedicarboxylate (DMAD) with ultimate formation of hydride iridafurans of the formula [TpIr(H){C(R1)?C(R2)C(R3)O }] (R1=R2=CO2Me; R3=alkyl, aryl; 3 ). Several intermediates have been observed in the course of the reaction. It is proposed that the key step of metallacycle formation is a C? C coupling process in the undetected IrI species [TpIr{η1O‐R3C(?O)H}(DMAD)] ( A ) to give the trigonal‐bipyramidal 16 e? IrIII intermediates [TpIr{C(CO2Me)?C(CO2Me)C(R3)(H)O }] ( C ), which have been trapped by NCMe to afford the adducts 11 (R3=Ar). If a second aldehyde acts as the trapping reagent for these species, this ligand acts as a shuttle in transfering a hydrogen atom from the γ‐ to the α‐carbon atom of the iridacycle through the formation of an alkoxide group. Methyl propiolate (MP) can be used instead of DMAD to regioselectively afford the related iridafurans. These reactions have also been studied by DFT calculations.  相似文献   

13.
A regio‐ and stereoselective synthesis of sulfones and thioethers by means of CuI‐catalyzed aerobic oxidative N?S bond cleavage of sulfonyl hydrazides, followed by cross‐coupling reactions with alkenes and aromatic compounds to form the C?S bond, is described herein. N2 and H2O are the byproducts of this transformation, thus offering an environmentally benign process with a wide range of potential applications in organic synthesis and medicinal chemistry.  相似文献   

14.
Comproportionation of [Ni(cod)2] (cod=cyclooctadiene) and [Ni(PPh3)2X2] (X=Br, Cl) in the presence of six‐, seven‐ and eight‐membered ring N‐aryl‐substituted heterocyclic carbenes (NHCs) provides a route to a series of isostructural three‐coordinate NiI complexes [Ni(NHC)(PPh3)X] (X=Br, Cl; NHC=6‐Mes 1 , 6‐Anis 2 , 6‐AnisMes 3 , 7‐o‐Tol 4 , 8‐Mes 5 , 8‐o‐Tol 6 , O‐8‐o‐Tol 7 ). Continuous wave (CW) and pulsed EPR measurements on 1 , 4 , 5 , 6 and 7 reveal that the spin Hamiltonian parameters are particularly sensitive to changes in NHC ring size, N substituents and halide. In combination with DFT calculations, a mixed SOMO of ∣3d〉 and ∣3d〉 character, which was found to be dependent on the complex geometry, was observed and this was compared to the experimental g values obtained from the EPR spectra. A pronounced 31P superhyperfine coupling to the PPh3 group was also identified, consistent with the large spin density on the phosphorus, along with partially resolved bromine couplings. The use of 1 , 4 , 5 and 6 as pre‐catalysts for the Kumada coupling of aryl chlorides and fluorides with ArMgY (Ar=Ph, Mes) showed the highest activity for the smaller ring systems and/or smaller substituents (i.e., 1 > 4 ≈ 6 ? 5 ).  相似文献   

15.
[(ArPMI)Mo(CO)4] complexes (PMI=pyridine monoimine; Ar=Ph, 2,6‐di‐iso‐propylphenyl) were synthesized and their electrochemical properties were probed with cyclic voltammetry and infrared spectroelectrochemistry (IR‐SEC). The complexes undergo a reduction at more positive potentials than the related [(bipyridine)Mo(CO)4] complex, which is ligand based according to IR‐SEC and DFT data. To probe the reaction product in more detail, stoichiometric chemical reduction and subsequent treatment with CO2 resulted in the formation of a new product that is assigned as a ligand‐bound carboxylate, [(PMI)Mo(CO)3(CO2)]2?, by NMR spectroscopic methods. The CO2 adduct [(PMI)Mo(CO)3(CO2)]2? could not be isolated and fully characterized. However, the C?C coupling between the CO2 molecule and the PDI ligand was confirmed by X‐ray crystallographic characterization of one of the decomposition products of [(PMI)Mo(CO)3(CO2)]2?.  相似文献   

16.
Second‐order rate constants have been measured spectrophotometrically for the reactions of Op‐nitrophenyl thionobenzoate ( 1 , PNPTB) with HO?, butan‐2,3‐dione monoximate (Ox?, α‐nucleophile), and p‐chlorophenoxide (p‐ClPhO?, normal nucleophile) in DMSO/H2O of varying mixtures at (25.0±0.1) °C. Reactivity of these nucleophiles significantly increases with increasing DMSO content. HO? is less reactive than p‐ClPhO? toward 1 up to 70 mol % DMSO although HO? is over six pKa units more basic in these media. Ox? is more reactive than p‐ClPhO? in all media studied, indicating that the α‐effect is in effect. The magnitude of the α‐effect (i.e., k/kp) increases with the DMSO content up to 50 mol % DMSO and decreases beyond that point. However, the dependency of the α‐effect profile on the solvent for reactions of 1 contrasts to that reported previously for the corresponding reactions of p‐nitrophenyl benzoate ( 2 , PNPB); reactions of 1 result in much smaller α‐effects than those of 2 . Breakdown of the α‐effect into ground‐state (GS) and transition‐state (TS) effects shows that the GS effect is not responsible for the α‐effect across the solvent mixtures. The role of the solvent has been discussed on the basis of the bell‐shaped α‐effect profiles found in the current study as well as in our previous studies, that is, a GS effect in the H2O‐rich region through H‐bonding interactions and a TS effect in the DMSO‐rich media through mutual polarizability interactions.  相似文献   

17.
18.
1H and 13C NMR chemical shifts of iron porphyrin complexes are determined mainly by the spin densities at the peripheral carbon and nitrogen atoms caused by the interaction between paramagnetic iron 3d and porphyrin molecular orbitals. This review describes how the half‐occupied iron 3d orbitals such as dπ(dxz, dyz), dxy, d, and d‐ interact with a specific porphyrin molecular orbital and affect the 1H and 13C NMR chemical shifts in planar, ruffled, saddled, and domed complexes. Revealing the relationship between the orbital interactions and NMR chemical shifts is quite important to determine the fine electronic structures of synthetic iron porphyrin complexes as well as naturally occurring heme proteins.  相似文献   

19.
The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+The results of comprehensive equilibrium and kinetic studies of the iron(III)–sulfate system in aqueous solutions at I = 1.0 M (NaClO4), in the concentration ranges of T = 0.15–0.3 mM, and at pH 0.7–2.5 are presented. The iron(III)–containing species detected are FeOH2+ (=FeH?1), (FeOH) (=Fe2H?2), FeSO, and Fe(SO4) with formation constants of log β = ?2.84, log β = ?2.88, log β = 2.32, and log β = 3.83. The formation rate constants of the stepwise formation of the sulfate complexes are k1a = 4.4 × 103 M?1 s?1 for the ${\rm Fe}^{3+} + {\rm SO}_4^{2-}\,\stackrel{k_{1a}}{\rightleftharpoons}\, {\rm FeSO}_4^+$ step and k2 = 1.1 × 103 M?1 s?1 for the ${\rm FeSO}_4^+ + {\rm SO}_4^{2-} \stackrel{k_2}{\rightleftharpoons}\, {\rm Fe}({\rm SO}_4)_2^-$ step. The mono‐sulfate complex is also formed in the ${\rm Fe}({\rm OH})^{2+} + {\rm SO}_4^{2-} \stackrel{k_{1b}}{\longrightarrow} {\rm FeSO}_4^+$ reaction with the k1b = 2.7 × 105 M?1 s?1 rate constant. The most surprising result is, however, that the 2 FeSO? Fe3+ + Fe(SO4) equilibrium is established well before the system as a whole reaches its equilibrium state, and the main path of the formation of Fe(SO4) is the above fast (on the stopped flow scale) equilibrium process. The use and advantages of our recently elaborated programs for the evaluation of equilibrium and kinetic experiments are briefly outlined. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 114–124, 2008  相似文献   

20.
An investigation was conducted into the effects of water content (R) on the ultimate tensile properties of nanocomposite hydrogels (NC gels) based on poly(N‐isopropylacrylamide)/clay networks. Rubbery NC gels with low clay contents (<NC10) exhibited unique changes in their stress–strain curves, depending on the R. At high R, where PNIPA chains are fully hydrated, NC gels retained their rubbery tensile properties, whereas they changed to exhibit plastic‐like deformations with decreasing R. Consequently, for a series of NC gels with different R, a failure envelope was obtained by connecting the rupture points in the stress–strain curves. Here, the counterclockwise movement was observed as either the R decreased or the strain rate increased. This seemed to be analogous to that of a conventional elastomer (e.g., SBR), although the mechanisms are different in the two cases. From the R and Cclay dependences of the ultimate properties, three critical values of R were defined, where R showed a maximum strain at break, a steep increase in initial modulus, and onset of brittle fracture. Compared with NC gels, OR gels (chemically crosslinked hydrogels) showed similar but very small changes in their stress–strain curves on altering R, whereas LR (viscous PNIPA solution) showed a monotonic decrease (increase) in εb (Ei) with decreasing R. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2328–2340, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号