首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
分别用H_2O_2、强碱(NaOH、 KOH)和强酸HNO_3处理CNTs.以处理后的CNTs为载体、通过浸渍RuCl_3水溶液结合高温H_2还原制备Ru/CNTs催化剂,并将其应用在氨分解催化反应中.利用XRD、 TPR、 TPD-MS表征手段研究了Ru在CNTs表面的分散、还原性能及CNTs表面化学基团,探究催化剂结构-性能间构效关系.结果表明,强碱及双氧水处理CNTs,为其表面引入了数量适宜的羧基、酸酐、酚等官能团,而传统硝酸处理则引入了大量的羧基、酸酐、酯、内酯、酚、醌和羰基等官能团,对CNTs本征结构性质影响很大.经强碱及双氧水处理CNTs上负载Ru后所得催化剂的效果明显优于传统硝酸处理CNTs上负载Ru催化剂.我们发展的CNTs的新型处理方法为研制高活性Ru/CNTs催化分解氨催化剂提供了新的思路.  相似文献   

2.
采用N2物理吸附、Boehm滴定、He-TPD-MS、CO化学吸附和透射电镜等手段考察了硝酸水热处理对活性炭(AC)及其负载的Ru基催化剂的孔结构、表面含氧基团、Ru分散度的影响,并评价了Ba-Ru-K/AC催化剂氨合成反应性能.结果表明,经硝酸水热处理后,AC表面含氧基团明显增多,但其孔结构变化不大.随着水热处理硝酸浓度的增加,AC表面含氧基团的数量增加,而相应催化剂的Ru分散度有所降低,Ru粒子尺寸增大.当硝酸浓度为2.0mol/L时,Ru分散度较高,且粒子尺寸(2.0nm)适宜,分散均匀,因此催化剂活性较高.在10MPa和10000h1条件下,400和375oC时,出口氨浓度分别达到17.80%和11.10%,较4.6mol/L硝酸回流处理AC负载的Ru基催化剂分别提高了16.8%和21.3%.水热处理AC的适宜条件为硝酸浓度2.0mol/L,150oC处理4h,填充度为70%.因此,通过调节水热处理时所用硝酸浓度可有效调控AC表面含氧基团的数量及其负载Ru的粒子尺寸.  相似文献   

3.
分别用H2O2、强碱(NaOH、KOH)和HNO3处理CNTs。以处理后的CNTs为载体、通过浸渍RuCl3水溶液结合高温H2还原制备Ru/CNTs催化剂,并将其应用在氨分解催化反应中。利用XRD、TPR、TPD-MS表征手段研究了Ru在CNTs表面的分散、还原性能及CNTs表面化学基团,探究催化剂结构-性能间构效关系。结果表明,强碱及双氧水处理CNTs,为其表面引入了数量适宜的羧基、酸酐、酚等官能团,而传统硝酸处理则引入了大量的羧基、酸酐、酯、内酯、酚、醌和羰基等官能团,对CNTs本征结构性质影响很大。经强碱及双氧水处理CNTs上负载Ru后所得催化剂的效果明显优于传统硝酸处理CNTs上负载Ru催化剂。本研究为CNTs的新型处理方法、表面化学官能团分析、提高Ru/CNTs催化分解氨活性提供了新的思路。  相似文献   

4.
活性炭及表面性质对Ru基氨合成催化剂性能的影响   总被引:9,自引:1,他引:8  
韩文锋  赵波  霍超  刘化章 《催化学报》2004,25(3):194-198
 采用N2物理吸附和He-TPD等表征手段考察了不同活性炭及其经HNO3和氧化处理后的孔结构性质及表面基团的变化,并用CO化学吸附分析了其对活性组分Ru分散度的影响. 结果表明,活性炭较发达的中孔结构可显著提高Ru的分散度. 活性炭的部分表面含氧基团是Ru的分散中心,它们的量会明显影响催化剂的Ru分散度及活性. 活性炭经HNO3处理虽然可以使含氧基团的量增加,但同时也使不稳定基团的量增加,这些不稳定基团在催化剂还原过程中分解,不利于Ru的分散. 活性炭的气相热处理可以调变其表面结构及表面基团,从而提高 Ru的分散度及催化剂活性.  相似文献   

5.
碳纳米管表面修饰程度对碳纳米管载Pt电催化性能的影响   总被引:5,自引:0,他引:5  
比较了用不同温度的浓HNO3处理的碳纳米管(CNTs)作载体的Pt(Pt/CNTs)对甲醇氧化的电催化活性. 结果表明浓HNO3处理使CNTs表面修饰上的含氧基团对CNTs上沉积Pt粒子的平均粒径有较大影响. 表面修饰程度适当时, 制得的Pt/CNTs中Pt粒子较小, 因此, 对甲醇氧化的电催化活性较高. 而表面修饰程度过大, 易使Pt粒子团聚, 从而降低Pt/CNTs催化剂对甲醇氧化的电化学活性.  相似文献   

6.
制备了壁厚约5nm、管径为140~220 nm薄壁碳纳米管(CNTs)和壁厚约50 nm.管径为80~200nm厚壁碳纳米管.研究了浓HNO3处理对不同壁厚CNTs结构和表面基团的影响.结果表明,经硝酸处理后,厚壁CNTs的双电层充放电电量(Qd)和表面含氧基团氧化所需电量(Qo)分别增加了1.34和0.098 mC,薄壁CNTs的Qd和Qo分别增加了5.69和0.175 mC.表明与厚壁CNTs相比,薄壁CNTs易被切断,表面碳原子易被氧化.当用常规液相还原法将Pt粒子沉积在薄壁和厚壁CN%上后,由于浓HNO3处理过的薄壁CNTs具有大的比表面积和多的含氧基团,Pt粒子更容易均匀的吸附在薄壁CNTs表面,因此,制得的Pt/CNTs催化剂对甲醇氧化有很高的电催化活性.  相似文献   

7.
碳纳米管结构对碳纳米管载Pt催化剂电催化性能的影响   总被引:1,自引:0,他引:1  
在制备单、双壁及不同管径的多壁碳纳米管(CNTs)的基础上, 用液相还原法把Pt沉积到单、双壁和管径不同的多壁CNTs上. 发现制得的CNTs载Pt(Pt/CNTs)催化剂对甲醇氧化的电催化活性随CNTs管径减小而增加. 这归结于管径小的CNTs的比表面积较大, 含氧基团多, 有利于提高Pt粒子分散度, 加上管径小的单壁CNTs具有更高的导电性, 这些因素都有利于提高Pt/CNTs催化剂对甲醇氧化的电催化活性.  相似文献   

8.
通过硝酸处理的方法对活性炭表面基团进行了调控,研究了活性炭表面基团的数量对负载钌基氨合成催化剂的影响。运用N2物理吸附、CO化学吸附、Boehm滴定法和质量滴定法等分析手段对催化剂进行了表征。结果表明,随着预处理硝酸浓度的增加,活性炭表面含氧基团的数量线性增加,等电点逐渐减小,而催化剂的活性先增加后减小,钌的分散度也呈现相同的规律。当硝酸浓度达到4.6mol/L时,活性炭表面总含氧基团量为1.21mmol/g,钌的分散度和催化剂的活性都是最佳。适量的含氧基团对提高钌的分散度是有利的,但过量的含氧基团并不能进一步提高钌的分散度,催化剂的合成氨活性和载体表面的含氧基团数量不是线性增加的关系。  相似文献   

9.
氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO_2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B_5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B_5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0 nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm~(-2)时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d_(5/2)的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm~(-2)时,钌金属传递电子给氧化铈,此时Ru 3d_(5/2)结合能有所增加;当钌表面密度高于1.4 Ru nm~(-2)后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d_(5/2)结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm~(-2)以及约为2.1 Ru nm~(-2)时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导.  相似文献   

10.
氨是关系国计民生的大宗化学品,也是氢能源的重要载体.目前,世界合成氨工业每年消耗约2%的世界总能源,并排放超过1%的CO2,节能降耗需求十分迫切,其中的关键在于高性能氨合成催化剂的开发.传统观点认为,B5活性位是钌催化剂上氮解离和氨合成的活性位,当钌粒子尺寸在1.8~2.5 nm时催化剂的B5活性位数量最多,而钌尺寸较小(0.7~0.8 nm)的催化剂几乎没有氨合成活性.本文通过改变钌负载量调变了氧化铈负载钌催化剂的钌表面浓度,证实钌粒子尺寸低于2.0nm时,氧化铈负载钌催化剂也具有较高的氨合成活性.XPS等表征结果证实:钌表面密度低于0.68 Ru nm-2时,钌主要以层状形式存在于氧化铈表面,层状钌与氧化铈紧密接触,电子从氧化铈的缺陷位传递给钌物种,在这种情况下,Ru 3d5/2的结合能有所下降,氮解离能力增强,这有利于提高催化剂的氨合成活性;当钌表面密度约为0.68 Ru nm-2时,钌金属传递电子给氧化铈,此时Ru 3d5/2结合能有所增加;当钌表面密度高于1.4 Ru nm-2后,钌物种优先在层状钌表面聚集成大尺寸钌纳米粒子,此时催化剂中同时存在钌团簇和钌纳米粒子,氧化铈载体对钌粒子电子性质的影响减弱,因此大尺寸钌金属颗粒Ru 3d5/2结合能又有所下降.另一方面,氢分子会在氧化铈表面形成均裂产物(两个OH基团)或异裂产物(Ce-H和OH).同时氢分子还会在0价钌金属表面解离形成氢原子,并进一步溢流到氧化铈表面与氧原子作用形成羟基.钌活性位上的氢物种比氧化铈中的氢更容易脱附,因此氧化铈中钌的存在不仅可以增强其氢吸附量,还降低了氢物种的吸附强度.当钌表面密度低时,氧化铈与钌的相互作用较强,催化剂中的氢物种容易溢流到氧化铈中形成羟基基团,此时催化剂的氢吸附能力增强,氢中毒问题较显著.当钌表面密度较高时,氢原子在大尺寸钌颗粒上移动、反应和脱附,因此催化剂的氢中毒问题也得到显著缓解.总之,对于氧化铈负载钌催化剂,氧化铈与钌金属之间的电子相互作用以及其吸附性质都会影响催化剂的氨合成活性,因此钌表面密度低于0.31 Ru nm-2以及约为2.1 Ru nm-2时,催化剂都展现出了较高的氨合成活性.本文将为设计制备高性能钌基氨合成催化剂提供理论指导.  相似文献   

11.
The reaction of three types of carbon nanofibers (CNFs; platelet: CNF‐P, tubular: CNF‐T, herringbone: CNF‐H) with [Ru3(CO)12] in toluene heated at reflux provided the corresponding CNF‐supported ruthenium nanoparticles, Ru/CNFs (Ru content=1.1–3.8 wt %). TEM studies of these Ru/CNFs revealed that size‐controlled Ru nanoparticles (2–4 nm) exist on the CNFs, and that their location was dependent on the surface nanostructures of the CNFs: on the edge of the graphite layers (CNF‐P), in the tubes and on the surface (CNF‐T), and between the layers and on the edge (CNF‐H). Among these Ru/CNFs, Ru/CNF‐P showed excellent catalytic activity towards hydrogenation of toluene with high reproducibility; the reaction proceeded without leaching of the Ru species, and the catalyst was reusable. The total turnover number of the five recycling experiments for toluene hydrogenation reached over 180 000 (mol toluene) (mol Ru)?1. Ru/CNF‐P was also effective for the hydrogenation of functionalized benzene derivatives and pyridine. Hydrogenolysis of benzylic C? O and C? N bonds has not yet been observed. Use of poly(ethylene glycol)s (PEGs) as a solvent made possible the biphasic catalytic hydrogenation of toluene. After the reaction, the methylcyclohexane formed was separated by decantation without contamination of the ruthenium species and PEG. The insoluble PEG phase containing all of the Ru/CNF was recoverable and reusable as the catalyst without loss of activity.  相似文献   

12.
PtRu alloy nanoparticles (24 +/- 1 wt %, Ru/Pt atomic ratios = 0.91-0.97) supported on carbon nanofibers (CNFs) were prepared within a few minutes by using a microwave-polyol method. Three types of CNFs with very different surface structures, such as platelet, herringbone, and tubular ones, were used as new carbon supports. The dependence of particles sizes and electrochemical properties on the structures of CNFs was examined. It was found that the methanol fuel cell activities of PtRu/CNF catalysts were in the order of platelet > tubular > herringbone. The methanol fuel cell activities of PtRu/CNFs measured at 60 degrees C were 1.7-3.0 times higher than that of a standard PtRu (29 wt %, Ru/Pt atomic ratio = 0.92) catalyst loaded on carbon black (Vulcan XC72R) support. The best electrocatalytic activity was obtained for the platelet CNF, which is characterized by its edge surface and high graphitization degree.  相似文献   

13.
采用超声处理的方法分别对管式纳米碳纤维(t-CNF)和鱼骨式纳米碳纤维(f-CNF)进行了表面化学处理. XPS结果表明, 在混酸(浓硫酸+浓硝酸)和氨水中进行超声化学处理可以在CNF表面分别引入含氧官能团和含氮官能团. 电化学测试结果表明, 2种不同微结构CNF的氧还原催化活性都遵循相同的趋势, 即CNF-P相似文献   

14.
In this paper, a new method is introduced for producing multi-functional cellulose nanofibers in order to achieve the biodegradable materials for various applications with a minimal amount of potentially toxic materials. Cellulose nanofibers (CNFs) were fabricated by electrospinning cellulose acetate solution followed by deacetylation. The CNFs were then treated with silver nitrate, ammonia, and sodium hydroxide and subsequently with dopamine as reducing and adhesive agent. Ag ions on the CNF surface were photo-reduced to Ag nanoparticles (NPs) using UVA irradiation to produce a dense layer of silver nanoparticles on the nanofibers. This is based on the simultaneous formation of polydopamine and Ag NPs on CNFs. Overall, this is a fast, simple, and efficient procedure that takes place in a conventional method at ambient temperature. The crystalline structure of CNFs decorated with AgNPs was studied by X-ray diffraction. Field-emission scanning electron microscopy and energy-dispersive X-ray patterns showed uniform distribution of silver nanoparticles on the CNF surface. Incorporation of AgNPs on the CNF surface via dopamine improved the electrical conductivity and also the tensile strength of the nanomat. The CNFs decorated with AgNPs exhibited a low electrical resistivity around 35 KΩ/square and a tensile strength of 87% higher than untreated CNFs.  相似文献   

15.
Novel two-dimensional carbon–carbon composites made of carbon nanofibers (CNFs) supported on a carbon preform were functionalized by non thermal plasma treatment (room temperature, atmospheric pressure, humid air), before being used as supports for metallic cobalt nanoparticles. It was shown that the degree of functionalization of the carbon nanofibers depends on the plasma power input, the treatment time and the CNF loading. The size of the cobalt nanoparticles generated after subsequent reduction of the Co-containing plasma treated CNF/C composites under hydrogen flow seems to be independent of the amount of supported cobalt. Changes in surface characteristics were analyzed using thermogravimetric analyses coupled to a mass spectrometer, X-ray photoelectron spectroscopy analyses and Raman spectroscopy. Transmission electron microscopy was used to complementary characterize the final size, dispersion and location of the so generated Co nanoparticles.  相似文献   

16.
The reaction of three types of carbon nanofibers (CNFs; platelet: CNF‐P, tubular: CNF‐T, herringbone: CNF‐H) with Ir4(CO)12 in mesitylene at 165 °C provided the corresponding CNF‐supported iridium nanoparticles, Ir/CNFs (Ir content=2.3–2.6 wt. %). Transmission electron microscopy (TEM) studies of these Ir/CNF samples revealed that size‐controlled Ir nanoparticles (average particle size of 1.1–1.5 nm) existed on the CNFs. Among the three Ir/CNF samples, Ir/CNF‐T showed an excellent catalytic activity and chemoselectivity towards hydrogenation of functionalized nitroarenes and imines; the corresponding aniline derivatives were obtained with high turnover numbers at ambient temperature under 10 atm of H2, and the catalyst is reusable. Ir/CNF‐T was also effective for the reductive N‐alkylation of anilines with carbonyl compounds.  相似文献   

17.
Aerogels prepared from aqueous dispersions of anionic and cationic cellulose nanofibrils (CNFs) were investigated as solid supports for enzymes and silver nanoparticles and to elicit a sustained antibacterial effect. The imparted stabilization in dry conditions was studied with aerogels that were cast after mixing the enzymes with CNFs followed by dehydration (freeze-drying). The activity of lysozyme immobilized in the given CNF system was analyzed upon storage in liquid and air media. In contrast with aqueous solutions of free, unbound enzyme, which lost activity after the first day, the enzyme immobilized physically in unmodified and cationic CNF presented better stability (activity for a longer time). However, the enzyme activity was reduced in the case of anionic CNF, which was prepared by TEMPO-mediated oxidation (TO-CNF). Both humidity and temperature reduced the stability of the enzyme immobilized in the respective CNF aerogel. The antibacterial activity of CNF aerogels carrying lysozyme was also tested against gram-negative and gram-positive bacteria. The results were compared with those obtained from CNF systems loaded with silver nanoparticles (AgNP) after in situ synthesis via UV reduction. Storage in cold or dry conditions preserved the activity and antibacterial performance of enzyme-loaded CNF aerogels. As expected, the lysozyme-containing aerogels showed lower inhibition than the AgNP-containing aerogel. In this latter case, the antibacterial activity depended on the concentration and size of the nanoparticles. Compared to unmodified CNF and TO-CNF, the aerogels prepared with cationic CNF, loaded with either lysozyme or AgNPs, showed remarkably better antibacterial activity. Similar experiments were conducted with horseradish peroxidase, which confirmed, to different degrees, the observations derived from the lysozyme systems. Overall, the results indicate that non-toxic and biodegradable CNF is a suitable support for bio-active materials and is effective in protecting and retaining enzymatic and antibacterial activities.  相似文献   

18.
Ru上有氧条件下氨分解的动力学研究   总被引:3,自引:0,他引:3  
IthasbeenshownthatRuisvalidforthesyn thesisanddecompositionofammonia[1,2 ] .FurtherstudyofammoniaadsorptionanditsdecompositionproductsdesorptiononRuwillbeimportant .Previ ousstudiesofammoniaadsorptiononRumainlyfo cusedontheammoniasynthesisandhydrogenpro ductionintheabsenceofoxygen[3] ,onlyafewinves tigationsonammoniadecompositioninthepresenceofoxygenhavebeenreported[4 ,5] ,andtheeffectofad sorbedoxygenontheratesofammoniadecompositionandproductformationonRuarestillnotwellunder stood .Inthispa…  相似文献   

19.
This paper describes the production, characteristics, and efficacy of carbon microfibers and carbon nanofibers for the removal of phenol and Pb(2+) from water by adsorption. The first adsorbent produced in the current investigation contained the ammonia (NH(3)) functionalized micron-sized activated carbon fibers (ACF). Alternatively, the second adsorbent consisted of a multiscale web of ACF/CNF, which was prepared by growing carbon nanofibers (CNFs) on activated ACFs via catalytic chemical vapor deposition (CVD) and sonication, which was conducted to remove catalytic particles from the CNF tips and open the pores of the CNFs. The two adsorbents prepared in the present study, ACF and ACF/CNF, were characterized by several analytical techniques, including SEM-EDX and FT-IR. Moreover, the chemical composition, BET surface area, and pore-size distribution of the materials were determined. The hierarchal web of carbon microfibers and nanofibers displayed a greater adsorption capacity for Pb(2+) than ACF. Interestingly, the adsorption capacity of ammonia (NH(3)) functionalized ACFs for phenol was somewhat larger than that of the multiscale ACF/CNF web. Difference in the adsorption capacity of the adsorbents was attributed to differences in the size of the solutes and their reactivity towards ACF and ACF/CNF. The results indicated that ACF-based materials were efficient adsorbents for the removal of inorganic and organic solutes from wastewater.  相似文献   

20.
Palladium electrocatalysts supported on carbon nanofibers (CNFs) with controlled microstructure or on activated carbon (AC) are prepared, and the effects of the carbon materials microstructure on the oxygen reduction reaction (ORR) properties of the electrocatalysts are investigated. The physical properties of the CNFs with different microstructure, i.e. platelet CNF (p-CNF) and fish-bone CNF (f-CNF), are characterized by high resolution transmission electron microscope and N2 physisorption. From cyclic voltammetric studies, it is found that Pd/p-CNF and Pd/f-CNF are more active than Pd/AC. The effects of CNF microstructure on the ORR activities of Pd/f-CNF and Pd/p-CNF are discussed. The p-CNF has a higher ratio of edge atoms to basal atoms, and therefore Pd/p-CNF has more positive ORR onset reduction potential and ORR peak potential than Pd/f-CNF. The supports also have influences on the reaction process. The ORR is surface reaction controlled when Pd/AC is used, while it becomes diffusion control when Pd/f-CNF is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号