首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Alloy thin films of CuIn(S0.4Se0.6)2 material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 °C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5×1012 ions/cm2 on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S0.4Se0.6)2 thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.  相似文献   

2.
《Solid State Sciences》2007,9(11):1049-1053
The structure, microstructure and in-plane dielectric properties of Barium tin titanate Ba(Sn0.15Ti0.85)O3 (BTS) thin films grown on (100) LaAlO3 (LAO) and (100) MgO single crystal substrates through sol–gel process were investigated. The films deposited on (100) LAO substrate exhibited a strong (100) preferred orientation while the film deposited on (100) MgO substrate showed polycrystalline structure. The in-plane ɛT measurements reveal that the films grown on (100) LAO substrate exhibited an obvious room-temperature ferroelectric state, while the film grown on MgO substrate showed paraelectric state in the temperature range of 10–130 °C. A high tunability of 52.11% was observed for the BTS films deposited on (100) LAO substrate at the frequency of 1 MHz with an applied electric field of 80 kV/cm, which is about two times larger than that of the BTS films deposited on (100) MgO substrate. The obvious differences in the dielectric properties could be attributed to the stress in the films, which come from lattice mismatch and difference in the thermal expansion coefficients between the film and substrates. This work clearly reveals the highly promising potential of BTS films for application in tunable devices.  相似文献   

3.
Single‐bi‐layer of Ni–Ti thin film was deposited using DC and RF magnetron sputtering technique by layer‐wise deposition of Ni and Ti on Si(100) substrate in the order of Ni as the bottom layer and Ti as the top layer. The deposition of these amorphous as‐deposited thin films was followed by annealing at 300 °C, 400 °C, 500 °C, and 600 °C temperature with 1‐h annealing time for each to achieve crystalline thin films. This paper describes the fabrication processes and the novel characterization techniques of the as‐deposited as well as the annealed thin films. Microstructures were analysed using FESEM and HRTEM. Nano‐indentation and AFM were carried out to characterize the mechanical properties and surface profiles of the films. It was found that, for the annealing temperatures of 300 °C to 600 °C, the increase in annealing temperature resulted in gradual increase in atomic‐cluster coarsening with improved ad‐atom mobility. Phase analyses, performed by GIXRD, showed the development of silicide phases and intermetallic compounds. Cross‐sectional micrographs exhibited the inter‐diffusion between the two‐layer constituents, especially at higher temperatures, which resulted either in amorphization or in crystallization after annealing at temperatures above 400 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The electrodeposition–annealing route to fabricating thin film of the promising photocatalyst material anatase-titanium dioxide (anatase-TiO2) has been studied. The sample was deposited with a solution of N,N-dimethylformamide containing titanium compound by controlled-potential technique. SEM image showed the annealed sample at 600 °C for 1 h under air provided a continuous film with a thickness of ca. 350 nm. In this sample, X-ray photoelectron spectrum corresponding to the Ti 2p peak assigned to a chemical bond of TiO2 and X-ray diffraction peaks assigned to the anatase phase were observed, respectively. Electrochemical oxidation in sodium sulfate solution on this annealed film was enhanced in the presence of UV light radiation. These results confirm the successful synthesis of photocatalytic anatase-TiO2 film by the electrodeposition and annealing process.  相似文献   

5.
It is demonstrated that nanostructured titanium (IV) oxide (TiO2) films can be deposited on glass substrates at 95 °C using hydrothermal growth, their properties being greatly affected by the substrate materials. Anatase TiO2 films grown on ITO for deposition period of 50 h were observed to exhibit a very efficient, reversible light-induced transition to super-hydrophilicity, reaching a nearly zero contact angle. Enhanced photocatalytic activity (65%) was found for the rutile TiO2 samples grown on microscope glass, possibly due to their higher roughness with respect to anatase grown on ITO. The effect of the substrate material used is discussed in terms of the TiO2 phase and morphology control, for the best photoinduced hydrophilic and photocatalytic performance of the samples.  相似文献   

6.
NiO thin films grown on Si (100) substrate by electron beam evaporation method and sintered at 700 °C were irradiated with 200 MeV Au15+ ions. The fcc structure of the sintered films was retained up to the highest fluence (1×1013 ions cm?2) of irradiation. However the microstructure of the pristine film underwent a considerable modification with increasing ion fluence. 200 MeV Au ion irradiation led to compressive stress generation in NiO medium. The diameter of the stressed region created by 200 MeV Au ions along the ion path was estimated from the variation of stress with ion fluence and found to be ~11.6 nm. The film surface started cracking when irradiated at and above the fluence of 3×1012 ions cm?2. Ratio of the fractal dimension of the cracked surface obtained at 200 MeV and 120 MeV (Mallick et al., 2010a) Au ions was compared with the ratio of the radii of ion tracks calculated based on Coulomb explosion and thermal spike models. This comparison indicated applicability of thermal spike model for crack formation.  相似文献   

7.
Here we report on the synthesis of binary transition metal nitride electrodes based on titanium vanadium nitride (TiVN) thin films. These films were deposited by a method compatible with micro-electronic processes which consists of DC co-sputtering of vanadium (V) and titanium (Ti) targets. TiVN films with different Ti/V ratio were deposited. A dependence of the capacitance and the cycling stability with the Ti/V atomic ratio in the films was established. While V rich sample exhibits a Faradic behavior that limits its cycling ability despite a high areal and volumetric capacity, the addition of Ti in the film drastically improves the cycling ability with virtually no fade in capacitance after 10,000 cycles. Furthermore, a 1.1 Ti/V ratio leads to an areal capacitance up to 15 mF·cm 2 in 1 M KOH electrolyte solution. Such electrodes shed light on the use of binary transition metal nitrides as candidate electrodes for micro-supercapacitor.  相似文献   

8.
A vertically aligned transparent TiO2 nanotube array (tTNA) of significantly enhanced tube-length 6.3 ± 0.3 µm was successfully synthesized on glass substrates by anodization technique with ammonium fluoride and ethylene glycol-based electrolyte. Prior to anodization, Ti metal was deposited on glass substrate by facing-target sputtering technique with various sputtering pressures at substrate temperature 420 °C to find out the relation between the structural properties of the Ti layer and the corresponding growth mechanism of the TiO2 nanotube. The study revealed that structural properties of Ti metal layers and its adhesion to the glass substrate, which can be tuned by deposition parameters, play an important role in the process of tTNA formation.  相似文献   

9.
Flat crystal ZnO thin films were prepared by chemical bath deposition technique onto glass substrates. XRD patterns of the films deposited at about 80 °C and annealed at 200 °C for 1 h in oxygen environment revealed the existence of polycrystalline hexagonal wurtzite phase with c-axis orientation of crystallites in the films. The crystallite size and lattice strain from X-ray line broadening profile were evaluated using the Scherrer method and Williamson–Hall method. Structural parameters such as dislocation density, stacking faults probability, lattice constants, lattice stress, unit cell volume, internal parameter, texture and number of crystallites per unit area have also been calculated. Surface morphology of the films was analyzed by scanning electron microscopy and atomic force microscopy. Photoluminescence spectrum at room temperature exhibited two luminescence centers, one is for UV emission (near band edge emission) located at 3.18 eV and another is for deep level emission located at 2.56 eV.  相似文献   

10.
In recent years, In2S3 is considered as a promising buffer layer in the fabrication of heterojunction solar cells. Film thickness is one of the important parameters that alters the physical characteristics of the grown layers significantly. The effect of film thickness on the structural, morphological, optical and electrical properties of close space evaporated In2S3 layers has been studied. In2S3 thin films with different thicknesses in the range, 100–700 nm were deposited on Corning glass substrates at a constant substrate temperature of 300 °C. The films were polycrystalline exhibiting strong crystallographic orientation along the (103) plane. The deposited films showed mixed phases of both cubic and tetragonal structures up to a thickness of 300 nm. On further increasing the film thickness, the layers showed only tetragonal phase. With increase of film thickness, both the crystallite size and surface roughness in the films were found to be increased. The optical constants such as refractive index and extinction coefficient of the as-grown layers have been calculated from the optical transmittance data in the wavelength range, 300–2500 nm. The optical transmittance of the films was decreased from 82% to 64% and the band gap varied in the range, 2.65–2.31 eV with increase of film thickness. The electrical resistivity as well as the activation energy was evaluated and found to decrease with film thickness. The detailed study of these results was presented and discussed.  相似文献   

11.
《Comptes Rendus Chimie》2014,17(12):1176-1183
This work is a study of Hg2+-doped TiO2 thin films deposited on silicon substrates prepared by sol–gel method and treated at temperatures ranging between 600 to 1000 °C for 2 h. The structural and optical properties of thin films have been studied using different techniques. We analyzed the vibrations of the chemical bands by Fourier transform infrared (FTIR) spectroscopy and the optical properties by UV–Visible spectrophotometry (reflection mode) and photoluminescence (PL). The X-ray diffraction and Raman spectra of TiO2 thin films confirmed the crystallization of the structure under the form of anatase, rutile, mercury titanate (HgTiO3) as a function of the annealing temperature. The observation by scanning electron microscopy (SEM) showed the changing morphology, with respect to nanostructures, nanosheets, nanotubes, with the annealing temperature. The diameters of nanotubes ranged from 50 nm to 400 nm. The photoluminescence and reflectance spectra indicated that these structures should enhance photocatalytic activity.  相似文献   

12.
Y-doped BaZrO3 (BZY) electrolyte films are successfully fabricated by utilizing the driving force from the anode substrate, aiming to circumvent the refractory nature of BZY materials. The BZY electrolyte film on the high shrinkage anode becomes dense after sintering even though no sintering aid is added, while the BZY electrolyte remains porous on the conventional anode substrate after the same treatment. The resulting BZY electrolyte shows a high conductivity of 4.5 × 10 3 S cm 1 at 600 °C, which is 2 to 20 times higher than that for most of BZY electrolyte films in previous reports. In addition, the fuel cell with this BZY electrolyte generates a high power output of 267 mW cm 2 at 600 °C. These results suggest the strategy presented in this study provides a promising way to prepare BZY electrolyte films for fuel cell applications.  相似文献   

13.
Zinc sulfide (ZnS) thin films have been successfully deposited via spray pyrolysis using an aqueous solution of thiourea and zinc acetate onto glass substrate. The effect of varying substrate temperature (150, 200,250 and 300 °C) on structure and optical properties is presented. The films have been characterized by X- ray diffraction (XRD), UV-Vis-NIR spectrometry, photoluminescence (PL) spectroscopy and field emission scanning electron microscopy (FESEM). All the deposited ZnS films exhibit a cubic structure, while crystallinity and morphology are found to depend on spray temperature. PL analysis indicates the presence of violet and green emissions arising from Zn and S vacancies. The value of bandgap of ZnS films is found to decrease slightly with increasing substrate temperature; varying in the range 3.52–3.25 eV, most probably associated with the formation of Zn(S,O) solid solution.  相似文献   

14.
Aerosol flame pyrolysis deposition method was applied to deposit the oxide glass electrolyte film and LiCoO2 cathode for thin film type Li-ion secondary battery. The thicknesses of as-deposited porous LiCoO2 and Li2O–B2O3–P2O5 electrolyte film were about 6 μm and 15 μm, respectively. The deposited LiCoO2 was sintered for 2 min at 700 °C to make partially densified cathode layer, and the deposited Li2O–P2O5–B2O3 glass film completely densified by the sintering at 700 °C for 1 h. After solid state sintering process the thicknesses were reduced to approximately 4 μm and 6 μm, respectively. The cathode and electrolyte layers were deposited by continuous deposition process and integrated into a layer by co-sintering. It was demonstrated that Aerosol flame deposition is one of the good candidates for the fabrication of thin film battery.  相似文献   

15.
The aim of our investigation was to study the influence of the nanoparticles size (the local structure) in sputter deposited Ni films on hydrogen evolution kinetics. The grain size of Ni-particles (11–100 nm) was controlled by the substrate temperature (from 35 °C to 300 °C). The dependence of the kinetic parameters on the temperature at which the films were deposited was measured in alkaline solution by electrochemical impedance spectroscopy (EIS). It correlates well with the change of the ratio between the nanocrystalline and non-homogenous disordered fraction of the nc-Ni film observable by Grazing incidence small angle X-ray scattering (GISAXS) analysis and ascribed to the intercrystalline matter. The catalytic activity of nanocrystalline nickel (nc-Ni) on the hydrogen evolution reaction (h.e.r.) is markedly greater at larger fraction of the spherical inhomogeneities inside the film. This effect is especially strongly pronounced for the nc-Ni films prepared on the substrates at lower temperatures.  相似文献   

16.
Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe_2O_3 with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm~2 and shows good stability in the 1 M KOH electrolyte solution.  相似文献   

17.
The influence of the negative substrate bias on the interfacial and microstructural characteristics of nanocrystalline silicon (nc-Si) thin films was deposited by hot wire chemical vapor deposition (HWCVD). Structural characterization of nc-Si films was performed by small angle X-ray diffraction (SAXRD), Raman spectroscopy, X-ray reflectivity (XRR) and field emission scanning electron microscopy (FESEM). Crystalline fraction and crystallite size increases from 61.31 to 74.13% and 13.3 to 21.6 nm, respectively, with an increasing negative bias from 0 to ?200 V. Furthermore, the deposition rate of nc-Si films increases from 25 to 68 nm/min by increase of negative substrate bias from 0 to ?200 V.  相似文献   

18.
Cerium oxide thin films were prepared by combined electron beam evaporation and ion beam assisted deposition techniques (EBE–IBAD). Their crystallographic structures, microstructures, and optical properties were studied as a function of the substrate temperature (200 °C and 500 °C) and the dose of Ar+ or O2+ ion assistance during growth. X-ray diffraction was used to estimate the crystallographic texture, grain size, microstrain and lattice constant. Sample microstructure was studied by scanning electron microscopy. Transmission UV–vis spectroscopy was employed to obtain optical information (band gap, density, and refractive index). All films showed a cubic CeO2 structure with different preferential growth depending on the preparation conditions. The bombardment with Ar+ ions during film deposition proved to be very effective for changing the film structure, hindering columnar growth and producing smaller grain sizes and higher values of microstrain and lattice constant. Films grown at 200 °C and Ar+ ion assistance showed the highest density, the smallest grain size (~10 nm) and a high expansion of the lattice constant (up to ~1%). This expansion is related to the presence of Ce3+ at the grain boundaries. Ion assistance during the growth leads to films with higher values of refractive index and lower values of band gap.  相似文献   

19.
Ablation of a silicone oil, Dow Corning's DC-705 with laser pulses of sub-ps duration in high vacuum is a novel approach to fabrication of Si-doped carbon nanocomposite films. Gently focused, temporally clean 700 fs pulses @ 248 nm of a hybrid dye/excimer laser system produce power densities of the order of 1011–1012 W cm?2 on the target surface. The evolution of the chemical structure of film material is followed by comparing Fourier Transformed Infrared and X-ray Photoelectron spectra of films deposited at temperatures between room temperature and 250 °C. Despite the low thermal budget technique, in the spectrum of films deposited at room temperature the fingerprint of the silicone oil can clearly be identified. With increasing substrate temperature the contribution of the features characteristic of the oil gradually diminishes, but does not completely disappear even at 250 °C. This result is intriguing since the chance of oil droplets to survive in their original liquid form on the hot surface should be minimal. The results of the X-ray Photoelectron Spectroscopy suggest that the chemical structure of the film material resembles that of the oil. Both reflection mode optical microscopy and low magnification Scanning Electron Microscopy reveal that the films are inhomogeneous: areas of lateral dimensions ranging from a few to tens of micrometers, characterized by different contrasts can be identified. On the other hand, surface mapping by Scanning Electron and Atomic Force Microscopy unambiguously proves that all films possess a solid surface consisting of nanoparticles of less than 100 nm dimension, without the presence of any drop of oil. Possible explanations of the puzzling results can be that the films are polymers consisting mainly of the molecules of the target material, or composites of solid C:Si nanoparticles and oil residues.  相似文献   

20.
Preliminary progress is reported in this communication in building a planar anode-supported low-temperature solid oxide fuel cell (SOFC) stack based on gadolinia-doped ceria (GDC) electrolyte, i.e. fabrication and characterization of a Ø80 planar bilayer structure composed of GDC electrolyte film and Ni–GDC anode substrate. The anode substrates were prepared from mixtures of NiO, GDC, and carbon black by die-pressing. After pre-firing to remove the carbon black, the anode substrates were deposited with a GDC layer using a spray coating technique. The green bilayers of anode substrate and electrolyte film were then co-sintered at 1500 °C for 3 h. Through proper control of the sintering process, bilayer structures with excellent flatness were achieved after co-sintering. Scanning electron microscopy (SEM) observation indicated that the electrolyte film was about 22 μm in thickness, highly dense, crack-free, and well-bonded to the anode substrate. Small disks which were cut out from the Ø80 bilayer structure were electrochemically examined in a single button-cell mode incorporating a (LaSr)(CoFe)O3–GDC composite cathode. With humidified hydrogen as the fuel and air as the oxidant, the cell demonstrated an open-circuit voltage of 0.884 V and a maximum power density of 562 mW/cm2 at 600 °C. The results imply that high-quality anode-supported electrolyte/anode bilayer structures were successfully fabricated. Based on them, planar anode-supported SOFC stacks will be assembled in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号