首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature, polymer composition, and concentration on the micellization and gelation properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers in aqueous solutions were investigated by 1H NMR spectroscopy. It was found that the temperature-dependent behavior of PPO blocks, observed as changes in chemical shift, half-height width, and integral value, could be attributed as an intrinsic tool to characterize the transition states during unimer to micelle formation. The 1H NMR spectral analysis revealed that the hydrophobic part, PPO, of the Pluronic polymers plays a more significant role in the temperature-induced micellization, whereas the transitional behavior of Pluronic polymer, i.e., from micellization to liquid crystals formation, resulted in the drastic broadening of the spectral signals for the PEO, indicating that the PEO segments play a more significant role in the crystallization process. It was also observed that the temperature-dependent changes in the half-height width of the PEO -CH2- signal are sensitive to the liquid crystalline phase formation, which could be attributed to the close packing of spherical micelles at high polymer concentrations or temperatures.  相似文献   

2.
Interaction of urea with pluronic block copolymers by 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
Solution 1H NMR techniques were used to characterize the interaction of urea with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The urea was established to interact selectively with the PEO blocks of the block copolymer, and the interaction sites were found not to change with increasing temperature. Such interactions influence the self-assembly properties of the block copolymer in solution by increasing the hydration of the block copolymers and stabilizing the gauche conformation of the PPO chain. Therefore, urea increases the critical micellization temperature (CMT) values of PEO-PPO-PEO copolymers, and the effect of urea on the CMT is more pronounced for copolymers with higher PEO contents and lower for those with increased contents of PPO segments.  相似文献   

3.
(1)H nuclear magnetic resonance (NMR) spectroscopy has been applied to study the temperature and concentration-induced micellization of a poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymer, Pluronic P105, in D(2)O solutions in the temperature range from 5 to 45 degrees C and the concentration range from 0.01 to 15% (w/v). The intrinsic probes, the chemical shift, and the half-height width of the PO CH(3) signal are very sensitive to the local environment and can be used to characterize the temperature and concentration-dependent aggregation process. When the temperature approaches the critical micellization temperature or the polymer concentration reaches the critical micellization concentration, the chemical shift of the PO CH(3) signal moves toward lower ppm values and the half-height width of the PO CH(3) signal shows a sudden increase. It indicates that the methyl groups are experiencing a progressively less polar environment and transferring from water to the hydrophobic micellar core. The hydrodynamic radius of the unimers and the micelles are determined as be 1.8 and 5.0 nm by means of pulsed-field gradient spin-echo (PGSE) NMR. They were independent of temperature and concentration. The drastic shortening of spin-lattice relaxation time T(1) for the PO CH(3)/CH(2) protons in the transition region suggested that the PPO blocks are located in a "liquid-like" micellar core, whereas the exponential increase of T(1) for the PEO CH(2) protons implied that the PEO blocks are still keeping in contact with surrounding water. Thermodynamics analysis according to a closed association model shows that the micellization process is entropy-driven and has an endothermic micellization enthalpy.  相似文献   

4.
The adsorption of selected poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) tri-block copolymers on synthetic clay particles (laponite) has been investigated. The adsorbed amount and distribution of polymer was determined as a function of relative block composition and size, using the technique of contrast variation small-angle neutron scattering. The pluronic molecules appear to adsorb via a preferential segregation of hydrophobic PPO segments at the surface, with hydrophilic PEO segments dangling into solution. The effect of the PPO segments is substantial with large increases in adsorbed amount and layer thickness as the anchor fraction decreases/PEO chain length increases. This is in direct contrast to the behavior observed for PEO homopolymer adsorption (of much higher molecular weights) where the adsorbed amount and layer thickness are smaller and change little with molecular weight.  相似文献   

5.
The change in the conformation of the flexible O-CH2-CH2-CH2-O segment of poly(trimethylene terephthalate) (PTT) monofilament caused by drawing was investigated by means of the gamma-gauche effect on the 13C solid-state NMR chemical shift of the internal methylene carbon, combined with the NMR relaxations. The conformation around the O-CH2 and CH2-O bonds for as-spun fiber was trans/trans. On drawing, followed by heat treatment, the conformation changed to gauche/gauche. The ratio of gauche/gauche to trans/trans for the drawn PTT fiber was determined quantitatively.  相似文献   

6.
1H and 13C chemical shifts of PVC chains have been evaluated using quantum chemistry methods in order to evidence and interpret the NMR signatures of chains bearing unsaturated and branched defects. The geometrical structures of the stable conformers have been determined using molecular mechanics and the OPLS force field and then density functional theory with the B3LYP functional and the 6-311G(d) basis set. The nuclear shielding tensor has been calculated at the coupled-perturbed Kohn-Sham level (B3LYP exchange-correlation functional) using the 6-311+G(2d,p) basis set. The computational scheme accounts for the large number of stable conformers of the PVC chains, and average chemical shifts are evaluated using the Maxwell-Boltzmann distribution. Moreover, the chemical shifts are corrected for the inherent and rather systematic errors of the method of calculation by employing linear regression equations, which have been deduced from comparing experimental and theoretical results on small alkane model compounds containing Cl atoms and/or unsaturations. For each type of defect, PVC segments presenting different tacticities have been considered because it is known from linear PVC chains that the racemic (meso) dyads are characterized by larger (smaller) chemical shifts. NMR signatures of unsaturations in PVC chains have been highlighted for the internal -CH=CH- and -CH=CCl- units as well as for terminal unsaturations like the chloroallylic -CH=CH-CH2Cl group. In particular, the 13C chemical shifts of the two sp2 C atoms are very close for the chloroallylic end group. The CH2 and CHCl units surrounding an unsaturation present also specific 13C chemical shifts, which allow distinguishing them from the others. In the case of the proton, the CH2 unit of the -CHCl-CH2-CCl=CH- segment presents a larger chemical shift (2.6-2.7 ppm), while some CHCl units close to the -CH=CH- unsaturations appear at rather small chemical shifts (3.7 ppm). The -CH2Cl and -CHCl-CH2Cl branches also display specific signatures, which result in large part from modifications of the equilibrium conformations and their reduced number owing to the increased steric interactions. These branches lead to the appearance of 13C peaks at lower field associated either to the CH unit linking the -CH2Cl and -CHCl-CH2Cl branches (50 ppm) or to the CHCl unit of the ethyl branches (60 ppm). The corresponding protons resonate also at specific frequencies: 3.5-4.0 ppm for the -CH2Cl branch or 3.8-4.2 ppm for the terminal unit of the -CHCl-CH2Cl branch. Several of these signatures have been detected in the experimental 1H and 13C NMR spectra and are consistent with the reaction mechanisms.  相似文献   

7.
An aqueous micellar solution of a PEO-PPO-PEO triblock copolymer, pluronic F88 (EO103PO39EO103), in the presence of salt (KCl) has been investigated by 1H NMR spectroscopy. The hydrogen-bonding structure in water is directly changed by the strong polarization effect of added salt, which indirectly weakens the interaction of polymer molecules with water. Both EO and PO blocks are dehydrated by the addition of salt in a similar way, whereas the solubility of the PO blocks may be affected in a more pronounced way, which results in the decrease of the critical micellization temperature (CMT). It is found that the addition of salt favors a more compact micellar core, where the water content is decreased and an effective PO-PO interaction is increased. Increasing the salt concentration would result in a decrease in the number of gauche conformers in the PPO chain, which may be the deeper reason for the decreasing solubility of PPO segments in aqueous salt solution. The temperature region over which the micellization occurs is broad, indicating that micelles and unimers coexist over an extended temperature range, whereas this transition region is significantly narrowed by the addition of salt. The addition of salt offers a good substitute way of changing the temperature to induce micellization. The critical micellization salt concentration (CMSC) is determined to be 1.0 mol l-1 for KCl in 2.5% aqueous pluronic F88 solution at 25 degrees C, and the transition region in which both free and associated copolymer molecules coexist is defined to range from 1 to 2 mol L-1.  相似文献   

8.
Apparent specific densities of aqueous solutions of the diblock copolymers C18(EO)100, C18(EO)20, and (EO)92(BO)18 and the triblock copolymers (EO)25(PO)40(EO)25 and (EO)21(PO)47(EO)21 in the micellar state have been measured over a temperature range from 10 to 90 degrees C at concentrations between 1% and 5%, using an oscillating tube densitometer. From these measurements, apparent specific volumes of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(butylene oxide) (PBO), and octadecane in the micellar state have been determined. The composition of the block copolymers was checked by NMR spectroscopy. Results were compared with published data for the polymers and bulk values for octadecane, respectively. The apparent specific density of PEO chains in the dissolved state was also measured for PEG4600 solutions at different concentrations and compared with results in the micellar state. The results presented in the paper are crucial in connection with analysis and modeling of small-angle X-ray scattering (SAXS) data from polymer and block copolymer micellar systems. PEO and PPO have a relatively low apparent partial specific volume in water at low temperatures. It is associated with water molecules making strong hydrogen bonds with the oxygen atoms on the polymer backbone. These water molecules gradually become disordered when the temperature is increased and the polymer apparent specific volume increases. For PBO in the micellar cores of PBO-PEO block copolymer micelles and in PNiPAM microgels, pronounced temperature dependence with the same origin is also found. The application of the derived results for the apparent specific volume of PEO for deriving contrast factors is demonstrated and the results are used in the analysis of SAXS data for semidilute solutions of PEG4600 in a broad temperature range.  相似文献   

9.
High-optical-quality titania-based mesostructured films with cubic or 2D-hexagonal symmetry were fabricated by combining trifluoroacetate (TFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) copolymers. The distribution, dynamics, and local environments of the TFA-modified titania, PEO, and PPO components of the hybrid were investigated. IR/Raman spectroscopy, in situ small-angle X-ray scattering, and transmission electron microscopy studies indicate that TFA coordinates the titanium center and forms a stable complex that is subsequently organized by the block copolymer species into ordered mesostructures. Solid-state NMR (19)F-->(1)H cross-polarization, (13)C{(1)H} two-dimensional heteronuclear correlation, and (1)H relaxation techniques were used to determine that PEO is predominantly incorporated within the TFA-modified titania, and that PPO environments encompass both microphase separated regions and interfacial regions composed of mixed PPO and TFA-modified titania. NMR (19)F multiple-quantum spin counting measurements suggest that -CF(3) groups of the trifluoroacetate ligands do not form clusters but instead randomly distribute within the inorganic component of the hybrid.  相似文献   

10.
A series of new polypseudorotaxanes were synthesized in high yields when the middle poly(ethylene oxide) (PEO) block of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) triblock copolymers was selectively recognized and included by alpha-cyclodextrin (alpha-CD) to form crystalline inclusion complexes (ICs), although the middle PEO block was flanked by two thicker PPO blocks, and a PPO chain had been previously thought to be impenetrable to alpha-CD. X-ray diffraction studies demonstrated that the IC domains of the polypseudorotaxanes assumed a channel-type structure similar to the necklace-like ICs formed by alpha-CD and PEO homopolymers. Solid-state CP/MAS (13)C NMR studies showed that the alpha-CD molecules in the polypseudorotaxanes adopted a symmetrical conformation due to the formation of ICs. The compositions and stoichiometry of the polypseudorotaxanes were studied using (1)H NMR, and a 2:1 (ethylene oxide unit to alpha-CD) stoichiometry was found for all polypseudorotaxanes although the PPO-PEO-PPO triblock copolymers had different compositions and block lengths, suggesting that only the PEO block was closely included by alpha-CD molecules, whereas the PPO blocks were uncovered. The hypothesis was further supported by the differential scanning calorimetry (DSC) studies of the polypseudorotaxanes. The glass transitions of the PPO blocks in the polypseudorotaxanes were clearly observed because they were uncovered by alpha-CD and remained amorphous, whereas the glass-transition temperatures increased, because the molecular motion of the PPO blocks was restricted by the hard crystalline phases of the IC domains formed by alpha-CD and the PEO blocks. The thermogravimetric analysis (TGA) revealed that the polypseudorotaxanes had better thermal stability than their free components due to the inclusion complexation. Finally, the kinetics of the threading process of alpha-CD onto the copolymers was also studied. The findings reported in this article suggested interesting possibilities in designing other cyclodextrin ICs and polypseudorotaxanes with block structures.  相似文献   

11.
The interaction in aqueous solution between either the normal block copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide): Pluronic PE6200 [(EO)(11)-(PO)(28)-(EO)(11)], or the reverse block copolymer poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide): Pluronic 25R4 [(PO)(19)-(EO)(33)-(PO)(19)] and the surfactants sodium decylsulfate, C(10)OS, decyltrimethyl ammonium bromide, C(10)TAB, and pentaethylene glycol monodecyl ether, C(10)E(5), was investigated and the aggregation behavior of these surfactants with Pluronics was compared. Surface tension measurements show that Pluronics in their non-aggregated state better interact with the anionic surfactant C(10)OS than with cationic and non-ionic ones. The presence of the two Pluronics induces the same lowering of the aggregation number of C(10)OS as shown by fluorescence quenching measurements. The number of polymer chains necessary to bind each C(10)OS aggregate has been estimated to be approximately 6 for PE6200 and approximately 2 for 25R4. Furthermore, this surfactant also induces the same increment in the gyration radius of the polymers as revealed by viscosimetry. Calorimetric results have been reasonably reproduced by applying a simple equilibrium model to the aggregation processes.  相似文献   

12.
The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and conductivity measurements.  相似文献   

13.
The characteristic feature of nonionic poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) (PEO‐PPO‐PEO) triblock copolymers is that at higher temperatures they undergo clouding and liquid‐liquid phase separation. The clouding temperature of such block copolymers can be profoundly altered in the presence of various additives. In this work the effect of various additives on the clouding phenomenon of triblock copolymer P85[(EO)26(PO)39(EO)26] is discussed.  相似文献   

14.
Amphiphilic BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH diblock and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐block‐PLA‐OH triblock copolymers incorporating thermoresponsive poly(ethylene oxide‐stat‐propylene oxide) (PEO‐stat‐PPO) blocks were prepared by ring‐opening polymerization of lactide (LA) initiated by macroinitiators formed from treating BuO‐(PEO‐stat‐PPO)‐OH and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH with AlEt3. MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH was prepared by coupling MeO‐PEO‐OH and HO‐(PEO‐stat‐PPO)‐OH, followed by chromatographic purification. The cloud points of 0.2% aqueous solutions are between 36 and 46 °C for the diblock copolymers that contain a 50 wt % EO thermoresponsive block and 78 °C for the triblock copolymer that contains a 75 wt % EO thermoresponsive block. Variable temperature 1H NMR spectra recorded on D2O solutions of the diblock copolymers display no PLA resonances below the cloud point and fairly sharp PLA resonances above the cloud point, suggesting that desolvation of the thermoresponsive block increases the miscibility of the two blocks. Preliminary characterization of the micelles formed in aqueous solutions of BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH conducted using laser scanning confocal microscopy and pulsed gradient spin echo NMR point to significant changes in the size of the micellar aggregates as a function of temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5156–5167, 2005  相似文献   

15.
We report the results of an investigation of the binding of a series of bisphosphonate drugs to human bone using 2H, 13C, 15N, and 31P nuclear magnetic resonance spectroscopy. The 31P NMR results show that the bisphosphonate groups bind irrotationally to bone, displacing orthophosphate from the bone mineral matrix. Binding of pamidronate is well described by a Langmuir-like isotherm, from which we deduce an approximately 30-38 A2 surface area per pamidronate molecule and a deltaG = -4.3 kcal mol(-1). TEDOR of [13C3, 15N] pamidronate on bone shows that the bisphosphonate binds in a gauche [N-C(1)] conformation. The results of 31P as well as 15N shift and cross-polarization measurements indicate that risedronate binds weakly, since it has a primarily neutral pyridine side chain, whereas zoledronate (with an imidazole ring) binds more strongly, since the ring is partially protonated. The results of 2H NMR measurements of side-chain 2H-labeled pamidronate, alendronate, zoledronate, and risedronate on bone show that all side chains undergo fast but restricted motions. In pamidronate, the motion is well simulated by a gauche+/gauche- hopping motion of the terminal -CH2-NH3(+) group, due to jumps from one anionic surface group to another. The results of double-cross polarization experiments indicate that the NH3(+)-terminus of pamidronate is close to the bone mineral surface, and a detailed model is proposed in which the gauche side-chain hops between two bone PO4(3-) sites.  相似文献   

16.
The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.  相似文献   

17.
通过阴离子聚合方法合成了环氧乙烷(EO)含量和分子量均相同的线型聚氧丙烯(PEO)-聚氧乙烯(PPO) (LPE)和X型聚氧丙烯-聚氧乙烯(TPE)嵌段聚醚,考察了它们在空气/水及正庚烷/水界面上聚集行为的差异. 界面活性的研究结果表明,TPE降低水、正庚烷界面张力的效率和效能均低于LPE的. 聚醚分子在正庚烷/水界面达到吸附平衡的时间比在空气/水表面短. 由于正庚烷分子插入到聚醚吸附层中,聚醚分子可以在正庚烷/水界面上采取更为直立的状态,因此聚醚分子在正庚烷/水界面扩散较快. 聚醚在正庚烷/水界面的扩张弹性高于空气/水表面的.  相似文献   

18.
Particles with an internal structure have been found in dilute water solutions of a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which has short hydrophilic PEO endblocks compared to the central hydrophobic PPO block (EO5PO68EO5, L121). The properties of the block copolymer particles (i.e., their structure, size, and time stability) have been investigated using cryogenic transmission electron microscopy (cryo-TEM) in combination with dynamic light scattering (DLS) and turbidity measurements. The particles were formed in dilute solutions by quenching the temperature to temperatures where the reversed hexagonal phase is in equilibrium with a solution of unaggregated L121 copolymers (L1). From the DLS measurements, a mean hydrodynamic radius of 158 nm was extracted. The time-scan turbidity measurements were found to be unchanged for about 46 h. At higher copolymer concentrations, a reversed hexagonal phase (H2) exists in the L121/water system. SAXS was used to investigate the internal structure of the dispersed L121-based particles containing 15 wt % L121. It was found that the internal structure transforms from H2 to an inverse micellar system (L2) as the temperature increases from 37 to 70 degrees C.  相似文献   

19.
The phase transition between unimer and micellar phases of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymer Pluronic P105 in aqueous solution has been investigated as a function of temperature using Fourier transform infrared spectroscopy. The transition of 8 wt% Pluronic P105 in aqueous solution was found to occur at 25 °C. As temperature increases, PO blocks appear to be stretched conformers with strong interchain interaction, and the formation of a hydrophobic core in the micellar phase. The EO chains are found to change to a more disordered structure with low-chain packing density from the unimer phase to the micellar phase. Both the EO and PO blocks exhibit dehydration during the phase transition. Received: 17 September 1998 Accepted in revised form: 10 December 1998  相似文献   

20.
The primary explosive hexamethylenetriperoxide diamine has previously been found to exist in the solid state as a racemic mixture of helically chiral, threefold symmetric enantiomers; another enantiomeric pair of low-energy conformers has been predicted, but has never been observed. We show by solution 2D NMR at 14 T, in achiral solution and by addition of chiral shift reagents, that all four optically isomeric conformers coexist at slow equilibrium on the NMR timescale at room temperature, and can be observed. Calculations of the 1H and 13C NMR chemical shifts using gauge-including atomic orbital methods are in excellent agreement with experiment; thermochemical calculation of the free energies in solution are in somewhat worse agreement, but correctly predict the relative stability of the conformers. Analysis of the effects of chiral shift reagents on the NMR spectra suggests that discrimination between chiral isomers is primarily around the molecular equator, around which the enantiomeric gauche O--O linkages are arrayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号