首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
《化学分析计量》2007,16(6):56-56
本发明涉及气体分离方法及装置,用于气体分离的新型耦合膜分离方法,原料气体经多个分离单元进行分离,每个分离单元原料气体首先与一侧的气体分离膜接触,能与载体溶液形成配体通过促进传递的气体组分首先在与之接触的气体分离膜内溶解扩散,然后与载体溶液形成配体结构以促进传递形式通过薄层载体溶液与另一侧气体分离膜接触,通过在该气体分离膜内的溶解扩散在渗透侧解吸;原料气中不能与载体溶液形成配体的气体组分首先在与之接触的气体分离膜内溶解扩散,然后在薄层载体溶液中以溶解扩散的形式与另一侧气体分离膜接触,通过在该气体分离膜内的溶解扩散在渗透侧解吸,达到分离原料气体的目的。本发明分离方法既满足气体高压分离要求,杜绝塑性效应,又防止膜的润湿和泄露,维持长期的稳定性。  相似文献   

2.
李芬  徐献芝  朱梅  宋辉 《应用化学》2008,25(6):750-0
以锌空气电池气体扩散电极为研究对象,采用分层添加催化剂的方式研究了改变催化层位置对气体扩散电极放电性能的影响.将气体扩散电极以集流体为中心分为两面:面向空气侧的A面与面向电解液侧的B面.根据催化剂添加位置的不同,制作四类电极:AB两面都添加催化剂、AB两面都不添加催化剂、只在A面添加催化剂、只在B面添加催化剂.在同等条件下对比并分析四类电极的放电效果.实验证明.当催化层位于气体扩散电极的空气侧(A面)时,整个电池的浓差极化与欧姆极化都会增大,而只在气体扩散电极靠近电解液侧(B面)添加催化剂时电极放电性能相对较好.  相似文献   

3.
由于装配压力的作用,气体扩散层产生形变,对质子交换膜燃料电池性能产生影响。国内外学者主要研究气体扩散层形变后对燃料电池性能产生的影响,但对不同流道宽度的燃料电池探究尚不明确。本文采用有限元法建立一个单流道质子交换膜燃料电池三维模型,研究了不同装配压力以及三种流道与肋度比(流道与肋宽比分别为3:2、1:1、2:3)下,气体扩散层厚度变化规律以及它们对孔隙率和电导率的影响。结果显示,随着装配压力的增加,肋下气体扩散层厚度变薄,孔隙率减小,电导率增加;在相同装配压力下,流道与肋宽度比值越大,肋下孔隙率越小,电导率越大。  相似文献   

4.
在实验室条件下用六种天然矿物对高温气体中碱蒸气的脱除进行了研究比较,结果得出高岭土具有最高的碱容量;实验表明吸附剂对碱蒸气的吸附不仅与吸附剂的化学成分有关,还与吸附剂的孔结构有关;同时讨论了反应温度、气体流速以及反应时间对高岭土碱容量的影响,并研究了850 ℃,气体流速为11.0 m/h时高岭土与碱蒸气的反应动力学,得出反应同时受化学反应和产物层的扩散所控制。  相似文献   

5.
李芬  徐献芝  宋辉  熊晋  吴飞 《物理化学学报》2009,25(11):2205-2210
在气体扩散电极的制作工艺中,加入乙醇对粘结剂聚四氟乙烯(PTFE)进行预处理.通过伞自动微孔物理化学吸附仪对气体扩散电极进行BET比表面积、Langmuir比表面积、孔分布等进行测试,并用扫描电子显微镜(SEM)检测观察电极表观形貌.以锌电极作为负极组装成锌空气电池,检测在不同的电流密度下气体扩散电极相对锌电极的电位变化,研究PTFE乳液经过乙醇预处理后对电极性能的影响.结果显示,PTFE乳液经过乙醇处理后,先膨胀后收缩,能够增加催化层和气体扩散层的孔隙结构和比表面积,从而使得电极有效电化学反应场所相应增多,减低电极在大电流密度条件下放电时的极化过电位.  相似文献   

6.
张慧  孟惠民 《物理化学学报》2013,29(12):2558-2564
采用气体扩散电极(GDE)代替传统析氢阴极电解制备二氧化锰(EMD),重点研究了气体扩散电极在强酸性MnSO4-H2SO4电解液中的稳定性、寿命及失效行为.结果表明:气体扩散电极在MnSO4-H2SO4电解液中重现性好、具有一定的稳定性,寿命可达400 h;平行实验表明,阳极沉积一定厚度的EMD是槽电压第一次升高的主要原因;电流密度为100 A m-2时,气体扩散电极失效前阴极过程的速度由氧的离子化反应和氧的扩散混合控制,失效后阴极过程由氧去极化和氢去极化共同组成,主要发生析氢反应;催化层聚四氟乙烯(PTFE)网络结构的破坏和镍网层的溶解是电极失效的原因之一;Pt的团聚降低了电极的电催化活性,是电极失效的主要原因;阴极失效是槽电压再次升高的主要原因.  相似文献   

7.
随着计算机科学技术的迅猛发展以及分子动力学(Molecular Dynamics,MD)模拟技术的不断完善,MD模拟已成为微观尺度上研究流体动态性质的有力工具,越来越多地应用到气体分子扩散传输的研究中.本文综述了近年来气体分子在纳米孔道材料中扩散传输的MD研究进展,包括单组分或多组分气体在人工纳米管、多孔膜材料、金属有机骨架多孔材料以及生物蛋白通道等的扩散传输,报道了温度、压强、气体组分以及纳米孔道材料结构等因素对扩散传输过程的影响.  相似文献   

8.
运用薄膜浸渍聚集体(TFFA)模型,考察了质子交换膜燃料电池(PEMFC)阴极伏安曲线受阴极结构参数变化的影响程度。计算结果表明:阴极反应层的孔隙率和厚度、反应层中浸渍聚集体体积分数、半径和涂覆的薄膜厚度、Nafion电解质离子传导率以及气体扩散层的平均孔径对电极性能有较大的影响。相比之下,反应层中气体通道半径、气体扩散层孔隙率以及反应层中碳相传导率的变化对电极性能影响不大。  相似文献   

9.
以双[对-酰氯苯基]二甲基硅烷和酚酞、四溴酚酞以及双酚A为原料,合成了三种主链含硅聚芳酯,并对聚合物相关的物理性质进行了表征,制成了均质透明的薄膜.采用低真空法测定这些聚合物对H2、O2、N2、CO2、CH4的气体透过速率,并计算出气体透过系数、扩散系数、溶解系数、分离系数.从气体透过性能与聚合物分子结构关系的角度,按照气体透过的溶解-扩散机制,对聚合物的气体透过性能进行了研究,而且着重讨论了聚合物的堆积密度对气体扩散系数的影响,以及聚合物主链中极性链段的百分含量对气体溶解系数和溶解选择性的影响。  相似文献   

10.
将薄膜浸渍聚集体(TFFA)模型用于描述质子交换膜燃料电池(PEMFC)阴极中氧的扩散和反应过程,其中包括氧气在气体扩散层和反应层气体通道中的扩散,氧气在反应层薄膜中的溶解和扩散,氧在反应层浸渍聚休体中的扩散和反应以及电子和离子的传导,并根据PEMFC阴极的结构特点给出TFFA模型的数值解法。  相似文献   

11.
采用磁控溅射技术在具有织构结构的气体扩散层(GDL)表面制备了可应用于氢氧质子交换膜燃料电池的超低Pt载量阴极催化层, 并通过SEM、 轮廓仪和XRD等测试方法表征了GDL及其载Pt后的形貌和物相, 利用XPS分析溅射Pt的化学价态, 使用电池测试台表征其电池性能. 测试结果表明, 磁控溅射法在GDL表面沉积的Pt催化层载量可控且分布均匀; 与商业GDL对比, Pt在织构GDL表面具有更大的可附着面积. 电池性能测试结果显示, 当Pt载量为0.04 mg/cm2时, 以织构GDL作基材的样品质量比功率高达26.25 kW/g Pt, 远大于商业GDL作基材时的17.76 kW/g Pt, 也大于同等Pt载量下商业Pt/C催化剂的24.00 kW/g Pt.  相似文献   

12.
In this study, the electrical contact resistance between gas diffusion layer (GDL) and catalyst layer (CL) on an electrolyte membrane was experimentally evaluated as a function of compression. The contact resistances between the GDL and CL decreased nonlinearly as the GDL thickness decreased due to the compression pressure. The values of the contact resistance between the GDL and CL were found to be more than one order of magnitude larger than the contact resistance between the GDL and graphite, and even comparable to the ionic resistance of the membrane. Because of the large value and variation in contact resistance between the GDL and CL, severe current distribution may be created inside the cell. The results reported here should be highly useful in providing a more accurate picture of the transport phenomena in a fuel cell.  相似文献   

13.
Lattice Boltzmann method (LBM) is used to investigate liquid water transport and distribution in a porous gas diffusion layer (GDL). The GDL with microscopic porous structures is obtained from three-dimensional reconstruction using the stochastic method, and its macroscopic transport properties including permeability and effective diffusivity are numerically predicted which agree well with the existing experimental results. Simulation results show that liquid water transport mechanism in the GDL is capillary fingering and liquid water pathway is interconnected, which confirms the previous experimental results in literature. Further, effects of GC wettability are explored and it is found out that a hydrophilic GC leads to less liquid water accumulated in the GDL compared with a hydrophobic GC. In addition, effects of GDL wettability on liquid water distribution are explored. Simulation results show that PTFE content itself cannot determine liquid water distribution inside the GDL and detailed distributions of hydrophobic and hydrophilic regions within the GDL also play an import role. Moreover, a hydrophilic GDL is more beneficial for reactant transport than a hydrophobic GDL if liquid water presents as separated droplets or films in the GDL.  相似文献   

14.
质子交换膜燃料电池的水平衡   总被引:1,自引:0,他引:1  
水平衡是制约质子交换膜燃料电池(PEMFC)性能稳定的关键技术之一。本文针对以H2为燃料的PEMFC的水平衡,首先介绍了电池的工作原理及水迁移;通过实验,证明了电池失水、积水对电池性能及寿命的影响,说明了水平衡的重要性;从电池的组成结构及运行参数详细讨论了影响水平衡的主要因素;并对电池水平衡的管理方法作了讨论。  相似文献   

15.
Journal of Solid State Electrochemistry - In this study, three-dimensional (3D) orthotropic mechanical properties of a commercial gas diffusion layer (GDL) are experimentally investigated. Although...  相似文献   

16.
At high current densities, gas bubble escape is the critical factor affecting the mass transport and performance of the electrolyzer. For tight assembly water electrolysis technologies, the gas diffusion layer (GDL) between the catalyst layer (CL) and the flow field plate plays a critical role in gas bubble removal. Herein, we demonstrate that the electrolyzer's mass transport and performance can be significantly improved by simply manipulating the structure of the GDL. Combined with 3D printing technology, ordered nickel GDLs with straight-through pores and adjustable grid sizes are systematically studied. Using an in situ high-speed camera, the gas bubble releasing size and resident time have been observed and analyzed upon the change of the GDL architecture. The results show that a suitable grid size of the GDL can significantly accelerate mass transport by reducing the gas bubble size and the bubble resident time. An adhesive force measurement has further revealed the underlying mechanism. We then proposed and fabricated a novel hierarchical GDL, reaching a current density of 2 A/cm2 at a cell voltage of 1.95 V and 80 °C, one of the highest single-cell performances in pure-water-fed anion exchange membrane water electrolysis (AEMWE).  相似文献   

17.
PEMFC膜电极组件(MEA)制备方法的评述   总被引:4,自引:0,他引:4  
膜电极组件(MEA)是质子交换膜燃料电池的核心部件.本文在简述MEA结构的基础上,根据MEA制备过程中催化层支撑体不同,将目前已有的多种MEA制备方法分为两类制备模式:以GDL为支撑体和以PEM为支撑体的制备模式.文中对这些制备方法的特点进行了详细评述,对MEA制备方法的发展趋势进行了展望,认为以PEM为支撑体的制备模式是今后MEA制备的主要发展方向.  相似文献   

18.
The condition of liquid water breakthrough at the cathode of polymer electrolyte fuel cells (PEMFC) is studied experimentally and data on corresponding water saturation and capillary pressure are provided for gas diffusion layers (GDL) with and without a microporous layer (MPL). The data demonstrate that the GDL saturation at water breakthrough is drastically reduced from ca. 25% to ca. 5% in the presence of MPL. This observation is consistent with considerations of invasion percolation in finite-size lattices and suggests an explanation for the role of MPL in improving PEMFC performance at high current densities.  相似文献   

19.
膜电极(MEA)是直接甲醇燃料电池(DMFC)的核心部件。文中对MEA的研究现状从4个方面进行了详细评述。首先,对组成MEA的关键材料,如电催化剂、质子交换膜、扩散层的研究进展进行了介绍,认为开发低温高效、贵金属载量低的电催化剂以及研制低成本、低甲醇渗透的非氟质子交换膜是MEA关键材料的研究方向。第二,对于MEA的制备方法,文中对以GDL为支撑体的GDE法和以PEM为支撑体的CCM法进行了详细的评述,认为CCM法是今后MEA制备工艺的重要发展方向。第三,关于MEA的表征技术,认为采用电化学方法结合现代谱学技术仍是未来一段时间对MEA表征的主要手段。第四,介绍了MEA数学模型的研究现状,DMFC数学模型的研究是以PEMFC的模型为基础建立起来的,但是建立DMFC的数学模型更为复杂,认为今后对DMFC膜电极模型的研究要充分考虑阳极二氧化碳与甲醇水溶液的两相流问题以及阴极甲醇渗透对电池性能影响的问题。最后,对直接甲醇燃料电池膜电极未来的发展进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号