首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Our method for estimating solvent effects on electronic spectra in media with strong solute-solvent interactions is applied here to calculate the absorption and fluorescence solvatochromatic shifts of dilute triazines in water. First, the ab initio CASSCF method is used to estimate the gas-phase electronic excitation properties and state charge distributions; second, Monte Carlo simulations are performed to elucidate liquid structures around the ground and excited state solute; finally, the solvent shift is evaluated based on the gas-phase charge distributions and the explicit solvent structures. For the dilute triazine solutions, simulations predict one linear (different) hydrogen bond attached to each nitrogen atom. Upon the first (1)(n, pi*)electronic excitation one hydrogen bond is completely broken. For the absorption and fluorescence spectra, our calculations demonstrated that the specific solvent-solute interaction, in any electronic state, plays a critical role in the determination of solvent shifts.  相似文献   

2.
An ab initio explicit solvation valence bond (VB) method, called VBEFP, is presented. The VBEFP method is one type of QM/MM approach in which the QM part of system is treated within the ab initio valence bond scheme and the solvent water molecules are accounted by the effective fragment potential (EFP) method, which is a polarized force field approach developed by Gordon et al. (J. Chem. Phys. 1996, 105, 1968). This hybrid method enables one to take the first-solvation shell and heterogeneous solvation effects into account explicitly with VB wave function. Therefore, the nature of chemical bonding and the mechanism of chemical reactions with explicit solvent environments can be explored at the ab inito VB level. In this paper, the hydrated metal-ligand complexes [M(2+)L](H(2)O)(n) (M(2+): Mg(2+), Zn(2+); L: NH(3), CH(2)O) are studied by the VBEFP method. Resonance energy and bond order are computed, and the influence of the solvent coordination and hydrogen bonding to the metal-ligand bonding are explored in the paper.  相似文献   

3.
We present the implementation of density functional response theory combined with the polarizable continuum model (PCM), enabling first principles calculations of molecular g-tensors of solvated molecules. The calculated g-tensor shifts are compared with experimental g-tensor shifts obtained from electron paramagnetic resonance spectra for a few solvated species. The results indicate qualitative agreement between the calculations and the experimental data for aprotic solvents, whereas PCM fails to reproduce the electronic g-tensor behavior for protic solvents. This failure of PCM for protic solvents can be resolved by including into the model those solvent molecules which are involved in hydrogen bonding with the solute. The results for the protic solvents show that the explicit inclusion of the solvent molecules of the first solvation sphere is not sufficient in order to reproduce the behavior of the electronic g-tensor in protic solvents, and that better agreement with experimental data can be obtained by including the long-range electrostatic effects accounted for by the PCM approach on top of the explicit hydrogen-bonded complexes.  相似文献   

4.
The solvatochromic shifts of the n-pi(*) and pi-pi(*) states of uracil in water are analyzed using a combined and sequential Monte Carlo/quantum mechanics (MC/QM) approach. The role of the solute polarization and electronic delocalization into the solvent region are investigated. Electronic polarization of the solute is obtained using the HF/6-31G(d), the polarizable continuum model (PCM) and an iterative procedure using MP2/aug-cc-pVDZ in the MC/QM. The in-water dipole moment of uracil is obtained, respectively, as 5.12 D, 6.12 D and 7.01 +/- 0.05 D. This latter result, corresponding to an increase of 60% with respect to the gas phase value, is used in the classical potential of the MC simulation to obtain statistically uncorrelated configurations for subsequent QM calculations of the ultraviolet-visible absorption spectrum of uracil in water. QM calculations are performed at the time-dependent density-functional theory (TD-DFT) combined with the B3LYP and B3PW91 functionals, multiconfigurational (CASSCF) and the semi-empirical all-valence electron INDO/CIS methods. Using 60 solute-solvent configurations with the explicit inclusion of 200 water molecules the solvatochromic shift is obtained as a blue shift of 0.50 eV for the n-pi(*) state and a red shift of 0.19 eV for the pi-pi(*) state, in good agreement with experimentally-inferred values. These results are compared with TD-DFT results in conjunction with PCM approaches and the importance of solute polarization and wave function delocalization over the solvent region is discussed. Our results suggest that the elusive n-pi(*) state of uracil in water lies around 255 nm hidden by the intense and broad pi-pi(*) transition with a maximum at 260 nm, inverting the relative locations of these states compared to the gas phase. This is further supported by considering the in-water dipole moment changes upon excitation, as obtained from CASSCF calculations.  相似文献   

5.
A combination of the polarizable continuum model (PCM) and the hybrid quantum mechanics/molecular mechanics (QM/MM) methodology, PCM-MM/QM, is used to include the solute electronic polarization and then study the solvent effects on the low-lying n→π(?) excitation energy and the (15)N nuclear magnetic shielding of pyrazine and pyridazine in aqueous environment. The results obtained with PCM-MM/QM are compared with two other procedures, i.e., the conventional PCM and the iterative and sequential QM/MM (I-QM/MM). The QM calculations are made using density functional theory in the three procedures. For the excitation energies, the time-dependent B3LYP/6-311+G(d) model is used. For the magnetic shielding, the B3LYP/aug-pcS2(N)/pcS2(C,O,H) is used with the gauge-including atomic orbitals. In both cases, i.e., PCM-MM/QM and I-QM/MM, that use a discrete model of the solvent, the solute is surrounded by a first shell of explicit water molecules embedded by an electrostatic field of point charges for the outer shells. The best results are obtained including 28 explicit water molecules for the spectral calculations and 9 explicit water molecules for the magnetic shielding. Using the PCM-MM/QM methodology the results for the n→π(?) excitation energies of pyridazine and pyrazine are 32,070 ± 80 cm(-1) and 32,675 ± 60 cm(-1), respectively, in good agreement with the corresponding I-MM/QM results of 32,540 ± 80 cm(-1) and 32,710 ± 60 cm(-1) and the experimental results of 33,450-33,580 cm(-1) and 32,700-33,300 cm(-1). For the (15)N magnetic shielding, the corresponding numbers for the gas-water shifts obtained with PCM-MM/QM are 47.4 ± 1.3 ppm for pyridazine and 19.7 ± 1.1 ppm for pyrazine, compared with the I-QM/MM values of 53.4?±?1.3 ppm and 19.5 ± 1.2 ppm and the experimental results of 42-54 ppm and 17-22 ppm, respectively. The agreement between the two procedures is found to be very good and both are in agreement with the experimental values. PCM-MM/QM approach gives a good solute polarization and could be considered in obtaining reliable results within the expected QM/MM accuracy. With this electronic polarization, the solvent effects on the electronic absorption spectra and the (15)N magnetic shielding of the diazines in water are well described by using only an electrostatic approximation. Finally, it is remarked that the experimental and theoretical results suggest that the (15)N nuclear magnetic shielding of any diazine has a clear dependence with the solvent polarity but not directly with the solute-solvent hydrogen bonds.  相似文献   

6.
Solvent effects on electronic structures and chain conformations of alpha-oligothiophenes nTs (n = 1 to 10) are investigated in solvents of n-hexane, 1,4-dioxane, carbon tetrachloride, chloroform, and water by using density functional theory (DFT) and molecular dynamics (MD) simulations. Both implicit and explicit solvent models are employed. The polarized continuum model (PCM) calculations and MD simulations demonstrate the weak solvent effects on the electronic structures of alpha-oligothiophenes. The lowest dipole-allowed vertical excitation energies of nTs, obtained from time-dependent DFT/PCM calculations at the B3LYP/6-31G(d) level, exhibit a red shift as the solvent polarity increases, in agreement with experiments. The studied solvents have little impact on the state order of the low-lying excited states provided that the nTs are kept in C2h or C2v symmetry. The MD simulations demonstrate that the chain conformations are distorted to some extent in polar and nonpolar solvents. A qualitative picture of the distribution of solvent molecules around the solvated nTs is drawn by means of radial and spatial distribution functions. The S...H-O and pi...H-O solute-solvent interactions are insignificant in aqueous solution.  相似文献   

7.
The absorption spectra of aminocoumarin C151 in water and n-hexane solution are investigated by an explicit quantum chemical solvent model. We improved the efficiency of the frozen-density embedding scheme, as used in a former study on solvatochromism (J. Chem. Phys. 2005, 122, 094115) to describe very large solvent shells. The computer time used in this new implementation scales approximately linearly (with a low prefactor) with the number of solvent molecules. We test the ability of the frozen-density embedding to describe specific solvent effects due to hydrogen bonding for a small example system, as well as the convergence of the excitation energy with the number of solvent molecules considered in the solvation shell. Calculations with up to 500 water molecules (1500 atoms) in the solvent system are carried out. The absorption spectra are studied for C151 in aqueous or n-hexane solution for direct comparison with experimental data. To obtain snapshots of the dye molecule in solution, for which subsequent excitation energies are calculated, we use a classical molecular dynamics (MD) simulation with a force field adapted to first-principles calculations. In the calculation of solvatochromic shifts between solvents of different polarity, the vertical excitation energy obtained at the equilibrium structure of the isolated chromophore is sometimes taken as a guess for the excitation energy in a nonpolar solvent. Our results show that this is, in general, not an appropriate assumption. This is mainly due to the fact that the solute dynamics is neglected. The experimental shift between n-hexane and water as solvents is qualitatively reproduced, even by the simplest embedding approximation, and the results can be improved by a partial polarization of the frozen density. It is shown that the shift is mainly due to the electronic effect of the water molecules, and the structural effects are similar in n-hexane and water. By including water molecules, which might be directly involved in the excitation, in the embedded region, an agreement with experimental values within 0.05 eV is achieved.  相似文献   

8.
We present a comparative study of solvent effects on the 15N NMR shielding constants and the lowest electronic excitation energy (n --> pi*) in the three diazines (pyrazine, pyrimidine, and pyridazine) in aqueous solution. This solvent is modeled using either a polarizable continuum model (PCM) or a discrete polarizable model (DPM). We analyze the results obtained with the two models in terms of differences/similarities in the reaction field produced at the solute. The PCM reaction field is found to be quite sensitive to the dimension of the cavity and so are the molecular properties. However, constructing the cavity so that the DPM and PCM reaction fields become similar in magnitude leads to quite similar results for the studied molecular properties modeling the solvent using either the PCM or the DPM. Compared to experimental data, the most accurate predicted results are obtained by describing the closest water molecules at the same level of sophistication as that of the solute, whereas the bulk solvent may be described using either PCM or MM. Finally, a comparison with geometry-optimized clusters seems to show that it is important to check potential deficiencies in the force field in order for this to treat hydrogen bonding in a consistent manner.  相似文献   

9.
The characteristics of the electronic transition energy of Coumarin 120 (C120) and its H‐bonded complexes in various solvents have been examined by time‐dependent density functional theory (TDDFT) in combination with a polarizable continuum solvent model (PCM). Molecular structures of C120 and its H‐bonded complexes are optimized with the B3LYP method in PCM solution, and the dihedral angle H14? N13? C7? H15 is dependent on solvent polarity and the type of H‐bond. A linear correlation of the absorption maximum of C120 with the solvent polarity function is revealed with the PCM model for all solvents except DMSO. The experimental absorption maximum of C120 in nine solvents is well described by a PCM–TDDFT scheme augmented with explicit inclusion of a few H‐bonded solvent molecules, and quantitative agreement between our calculated results and experimental measurements is obtained with an average error of less than 2 nm. H‐bonding at three different sites shifts the absorption wavelength of C120 either to the blue or to the red, that is, a significant role is played by solvent molecules in the first solvation shell in determining the electronic transition energy of C120. The dependence on the H‐bonding site and solvent polarity is examined by using the Kamlet–Taft equation for solvatochromism.  相似文献   

10.
We present a formal comparison between the two different approaches to the calculation of electronic excitation energies of molecules in solution within the continuum solvation model framework, taking also into account nonequilibrium effects. These two approaches, one based on the explicit evaluation of the excited state wave function of the solute and the other based on the linear response theory, are here proven to give formally different expressions for the excitation energies even when exact eigenstates are considered. Calculations performed for some illustrative examples show that this formal difference has sensible effects on absolute solvatochromic shifts (i.e., with respect to gas phase) while it has small effects on relative (i.e., nonpolar to polar solvent) solvatochromic shifts.  相似文献   

11.
Excited electronic states of the anion radical of para-benzoquinone were studied by time dependent density functional theory (TD-DFT) including bulk solvent effects by the polarizable continuum model (PCM). The computed vertical excitation energies for the first four low-lying doublet states are in good agreement with previous post-Hartree–Fock computations. Geometry optimization of excited states and inclusion of solvent effects lead to a remarkable agreement between computed adiabatic transition energies and experimental band maxima. Together with their specific interest, the results point out the reliability of TD-DFT/PCM approach for valence excitations and the need to take geometry relaxation and solvent effects into the proper account for a meaningful comparison between computed and experimental absorption spectra.  相似文献   

12.
Abstract— The Basu theory of the solvent effect on the absorption spectra of dye molecules in nonpolar solvent is reexamined. The term due to the transition dipole moment of a solute molecule was found to be irrelevant in the formula of the spectral shift and only the term due to the electronic polarizability was necessary for the spectral shifts of large dye molecules.  相似文献   

13.
Intermolecular interactions regulate the molecular properties in proteins and solutions such as solvatochromic systems. Some of the interactions have to be described at an electronic‐structure level. In this study, a commutator for calculating the excitation energy is used for deriving a first‐order interacting space (FOIS) to describe the environmental response to solute excitation. The FOIS wave function for a solute‐in‐solvent cluster is solved by second‐order perturbation theory. The contributions to the excitation energy are decomposed into each interaction and for each solvent.  相似文献   

14.
The solvent response on the solute is calculated by the reference interaction site model (RISM) and by the polarizable continuum model (PCM) methods. The linearized RISM technique is developed to treat free energies of atomic and polyatomic ions in water. An empirical repulsive bridge is used for the RISM calculations. The solvent electrostatic potential is approximated by a linear dependence on the solute atomic charges. For a series of monovalent polyatomic cations and anions, the method provides free energies deviating by few percent from the experimental data. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

15.
《Chemphyschem》2003,4(10):1084-1094
Using the density‐functional vertical self‐consistent reaction field (VSCRF) solvation model, incorporated with the conductor‐like screening model (COSMO) and the self‐consistent reaction field (SCRF) methods, we have studied the solvatochromic shifts of both the absorption and emission bands of four solvent‐sensitive dyes in different solutions. The dye molecules studied here are: S‐TBA merocyanine, Abdel‐Halim's merocyanine, the rigidified aminocoumarin C153, and Nile red. These dyes were selected because they exemplify different structural features likely to impact the solvent‐sensitive fluorescence of “push‐pull”, or merocyanine, fluorophores. All trends of the blue or red shifts were correctly predicted, comparing with the experimental observations. Explicit H‐bonding interactions were also considered in several protic solutions like H2O, methanol and ethanol, showing that including explicit H‐bonding solvent molecule(s) in the calculations is important to obtain the correct order of the excitation and emission energies. The geometries, electronic structures, dipole moments, and intra‐ and intermolecular charge transfers of the dyes in different solvents are also discussed.  相似文献   

16.
The solvent reorganization process after electronic excitation of a polar solute in a polar solvent such as acetonitrile is related mainly to the time evolution of the solute-solvent electrostatic interaction. Modern laser-based techniques have sufficient time resolution to follow this decay in real time, providing information to be confirmed and interpreted by theories and models. We present here a study aimed at the investigation of the different steps involved in the process taking place after a vertical S(0) --> S(1) excitation of a large size chromophore, coumarin 153 (C153), in acetonitrile, from both the solute and the solvent points of view. To do this, we use accurate quantum mechanical calculations for the solute properties within the polarizable continuum model (PCM) and classical molecular dynamics (MD) simulations, both equilibrium and nonequilibrium, for C153 in the presence of the solvent. The geometry of the solute is allowed to change in order to study the role of internal motions in the time-dependent solvation process. The solvent response function has been obtained from the simulation data and compared to experiment, while the comparison between equilibrium and nonequilibrium MD results for the solvation response confirms the validity of the linear response approximation in the C153-acetonitrile system. The MD trajectories have also been used to monitor the structure of the solvation shell and to determine its change in response to the change in the solute partial charges.  相似文献   

17.
Vibronic coupling within the excited electronic manifold of the solute all-trans-β-carotene through the vibrational motions of the solvent cyclohexane is shown to manifest as the "molecular near-field effect," in which the solvent hyper-Raman bands are subject to marked intensity enhancements under the presence of all-trans-β-carotene. The resonance hyper-Raman excitation profiles of the enhanced solvent bands exhibit similar peaks to those of the solute bands in the wavenumber region of 21,700-25,000 cm(-1) (10,850-12,500 cm(-1) in the hyper-Raman exciting wavenumber), where the solute all-trans-β-carotene shows a strong absorption assigned to the 1A(g) → 1B(u) transition. This fact indicates that the solvent hyper-Raman bands gain their intensities through resonances with the electronic states of the solute. The observed excitation profiles are quantitatively analyzed and are successfully accounted for by an extended vibronic theory of resonance hyper-Raman scattering that incorporates the vibronic coupling within the excited electronic manifold of all-trans-β-carotene through the vibrational motions of cyclohexane. It is shown that the major resonance arises from the B-term (vibronic) coupling between the first excited vibrational level (v = 1) of the 1B(u) state and the ground vibrational level (v = 0) of a nearby A(g) state through ungerade vibrational modes of both the solute and the solvent molecules. The inversion symmetry of the solute all-trans-β-carotene is preserved, suggesting the weak perturbative nature of the solute-solvent interaction in the molecular near-field effect. The present study introduces a new concept, "intermolecular vibronic coupling," which may provide an experimentally accessible∕theoretically tractable model for understanding weak solute-solvent interactions in liquid.  相似文献   

18.
Density functional theory combined with the polarizable continuum model (PCM) and continuous set of gauge transformations method is applied to investigate the effects of solvent polarity on the nitrogen NMR shieldings of N, N‐dimethylacetamidine. Hydrogen bonding effects on shielding are likewise calculated using a supermolecule approach, where the imino group of the solute is hydrogen bonded with solvent. Theoretical results are compared with published experimental data. The PCM shielding calculations utilizing PCM‐optimized solute geometries yield results comparable to those obtained with the supermolecule approach. Geometry optimization of the solute appears to be more important in PCM shielding calculations than in the supermolecule approach. The large solvent shifts observed in water can only be reproduced when the N·H distance used in the calculation indicates full proton transfer from water to the imino nitrogen of the solute. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A hybrid quantum mechanical and molecular mechanical potential is used in Monte Carlo simulations to examine the solvent effects on the electronic excitation energy for the n→π* transition of pyrimidine in aqueous solution. In the present study, the pyrimidine molecule is described by the semi-empirical AM1 model, while the solvent molecules are treated classically. Two sets of calculations are performed: the first involves the use of the pairwise three-point charge TIP3P model for water, and the second computation employs a polarizable many-body potential for the solvent. The latter calculation takes into account the effect of solvent polarization following the solute electronic excitation, and makes a correction to the energies determined using pairwise potentials, which neglects such fast polarization effects and overestimates the solute-solvent interactions on the Franck-Condon excited states. Our simulation studies of pyrimidine in water indicate that the solvent charge redistribution following the solute electronic excitation makes modest corrections (about −130␣cm−1) to the energy predicted by using pairwise potentials. Specific hydrogen bonding interactions between pyrimidine and water are important for the prediction of solvatochromic shifts for pyrimidine. The computed n→π* blue shift is 2275±110 cm−1, which may be compared with the experimental value (2700 cm−1) from isooctane to water. Received: 14 January 1997 / Accepted: 21 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号