首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Optical activity in inorganic colloidal materials was controlled through interactions of chiral molecules with the nanoparticle (NP) surface. An inversion of optical activity in the synthesis of mercury sulfide (HgS) NPs was demonstrated with an intrinsically chiral crystalline system in the presence of an identical chiral capping ligand. A continuous decrease in the positive first Cotton effect and an eventual reversal of CD profile were observed upon heating the aqueous solution of HgS NPs capped with N‐acetyl‐l ‐cysteine (Ac‐l ‐Cys) at 80 °C. Ac‐l ‐Cys afforded two bidentate coordination configurations with an almost mirror image of each other using the thiolate and either of carboxylate or acetyl–carbonyl groups on the HgS core. Experiment and calculation suggest that a shift in the distribution of the NP formation with energy in response to the combinations of ligand coordination structure and chiral crystalline surface is responsible for the inversion of optical activity.  相似文献   

2.
CH3NH3PbBr3 perovskite nanocrystals (PNCs) of different sizes (ca. 2.5–100 nm) with high photoluminescence (PL) quantum yield (QY; ca. 15–55 %) and product yield have been synthesized using the branched molecules, APTES and NH2‐POSS, as capping ligands. These ligands are sterically hindered, resulting in a uniform size of PNCs. The different capping effects resulting from branched versus straight‐chain capping ligands were compared and a possible mechanism proposed to explain the dissolution–precipitation process, which affects the growth and aggregation of PNCs, and thereby their overall stability. Unlike conventional PNCs capped with straight‐chain ligands, APTES‐capped PNCs show high stability in protic solvents as a result of the strong steric hindrance and propensity for hydrolysis of APTES, which prevent such molecules from reaching and reacting with the core of PNCs.  相似文献   

3.
Time-resolved electron paramagnetic resonance spectroscopy is used to probe energy transfer from aromatic photoexcited triplet states to azo compounds in liquid solution. The observation of chemically induced dynamic electron spin polarization in the spectra gives precise information regarding the spin physics and mechanism of the energy transfer process. The substrate size is varied by altering the chain length of alkyl chains covalently attached to the azo compounds via ester or amide linkages. The solvent dependence of the energy transfer process is also investigated. The results are discussed in terms of Dexter and F?rster mechanisms for energy transfer, the properties of the excited states, and the diffusive properties of the molecules in the solvents of interest. Decomposition rate studies and fluorescence measurements are also reported.  相似文献   

4.
The polyol reduction of a Ag precursor in the presence of an organic stabilizer, such as poly(vinylpyrrolidone), is a widely used method for the production of Ag nanowires (NWs). However, organic capping molecules introduce insulating layers around each NW. Herein we demonstrate that Ag NWs can be produced in high yield without any organic stabilizers simply by introducing trace amounts of NaCl and Fe(NO3)3 during low‐temperature polyol synthesis. The heterogeneous nucleation and growth of Ag NWs on initially formed AgCl particles, combined with oxidative etching of unwanted Ag nanoparticles, resulted in the selective formation of long NWs with an average length of about 40 μm in the absence of a capping or stabilizing effect provided by surface‐adsorbing molecules. These organic‐stabilizer‐free Ag NWs were directly used for the fabrication of high‐performance transparent or stretchable electrodes without a complicated process for the removal of capping molecules from the NW surface.  相似文献   

5.
Episulfide polymerization offers a number of features that are uncommon in other ring‐opening anionic mechanisms. Besides the negligible sensitivity to water, the most distinctive and novel one is likely to be the role of disulfides, which may act both at the levels of chain transfer and end‐capping, producing polymers that feature both terminal and internal disulfides. In this article, we have qualitatively studied the kinetics of chain transfer and measured the thiolate–disulfide exchange equilibrium constants. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2233–2249, 2008  相似文献   

6.
4-(S-Acetylthiomethyl)phenyl- and pyrenyl-functionalized π-conjugated porphyrin oligomers were synthesized. The distribution of the length of the oligomers could be controlled by changing the ratio of the starting porphyrin to the capping molecules. Oligomers from dimers to heptamers were isolated using size exclusion chromatography. The spectroscopic properties of these oligomers were measured to determine the influences of the number of porphyrin units and capping molecules on the absorption and emission spectra.  相似文献   

7.
Aggregation‐induced emission (AIE) provides an efficient strategy to synthesize highly luminescent metal nanoclusters (NCs), however, rational control of emission energy and intensity of metal NCs is still challenging. This communication reveals the impact of surface AuI‐thiolate motifs on the AIE properties of Au NCs, by employing a series of water‐soluble glutathione (GSH)‐coordinated Au complexes and NCs as a model ([Au10SR10], [Au15SR13], [Au18SR14], and [Au25SR18]?, SR=thiolate ligand). Spectroscopic investigations show that the emission wavelength of Au NCs is adjustable from visible to the near‐infrared II (NIR‐II) region by controlling the length of the AuI‐SR motifs on the NC surface. Decreasing the length of AuI‐SR motifs also changes the origin of cluster luminescence from AIE‐type phosphorescence to Au0‐core‐dictated fluorescence. This effect becomes more prominent when the degree of aggregation of Au NCs increases in solution.  相似文献   

8.
Based on the van der Waals (vdW) interaction between carbon atoms, the interface cohesive energy between parallel single-walled carbon nanotubes was studied using continuous mechanics theory, and the influence of the diameter of carbon nanotubes and the distance between them on the cohesive energy was analyzed. The results show that the size has little effect on the cohesive energy between carbon nanotubes when the length of carbon nanotubes is over 10 nm. At the same time, we analyzed the cohesive energy between parallel carbon nanotubes with the molecular dynamics simulation method. The results of the two methods were compared and found to be very consistent. Based on the vdW interaction between parallel carbon nanotubes, the vibration characteristics of the two parallel carbon nanotube system were analyzed based on the continuous mechanical Euler-beam model. The effects of the vdW force between carbon nanotubes, the diameter and length of carbon nanotubes on the vibration frequency of carbon nanotubes was studied. The obtained results are helpful in improving the understanding of the vibration characteristics of carbon nanotubes and provide an important theoretical basis for their application.  相似文献   

9.
By using a size‐dependent cohesive energy formula for two‐dimensional coordination materials, the bandgap openings of ideal graphene quantum dots (GQDs) and nanoribbons (GNRs) have been investigated systematically regarding dimension, edge geometry, and magnetic interaction. Results demonstrate that the bandgap openings in GQDs can be dominated by the change of atomic cohesive energy. Relative to zigzag GQDs, the openings in the armchair ones are more substantial, attributed to its edge instability. The change of cohesive energy can also lead to bandgap openings in zigzag and armchair GNRs. The contribution from the interedge magnetic interaction in zigzag GNRs is negligible, while the cohesive‐energy induced openings in armchair GNRs can oscillate according to the so‐called full‐wavelength effect, depending on the width. The model prediction provides physicochemical insight into the bandgap openings in graphene.  相似文献   

10.
Photoreactive main chain liquid crystalline polyesters containing oxadiazole and bis(benzylidene)cycloalkanone moieties were synthesized and characterized by structural, thermal, mesomorphic, and optical measurements. The bis(benzylidene) cycloalkanone chromophores in the main chain can constitute both as a mesogen and photoreactive center, whereas 1,3,4‐oxadiazole is a well‐known fluorophore. The thermal properties of polymers were found to be inversely proportional not only to the spacer length but also to ring‐size of cycloalkanones. Hot stage polarized optical microscopic investigations displayed enantiotropic nematic liquid crystalline phases and development of grainy to schlieren textures depends on the length of flexible spacer in the polymer backbone which was in accordance with DSC analysis. Both photoisomerization and photodimerization are observed from the absorption spectra and discussed. The fluorescence spectra in solution state at various concentrations showed that the polymers show blue‐emission maxima and the Stokes shifts being 48–49 nm. The energy transfer occurred when increasing the concentration of the solution. The band gap energies calculated from the absorption spectra are in the range of 3.17–3.41 eV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5760–5775, 2008  相似文献   

11.
Micron‐sized gold nanosheets were produced through thermolysis of a mixture composed of 1‐octa‐decanylimidazole (C18‐im) and HAuCl4 in a molar ratio of 4:1 at 200 °C for 1 h. Effects of the molar ratio of [18‐im]/[HAuCl4], the reaction temperature, and the N‐alkylimidazole chain length were studied. Adjusting the molar ratio of [C18‐im]/[HAuCl4] can tune the morphology and size of the nanostructures; the effect of reaction temperature is minimum; while using long chain imidazole tends to favor the formation of nanosheets, using 1‐methylimidazole (C1‐im) produces micron‐sized polyhedra. The growth mechanism of these nanostructures was proposed. C18‐im functions both as a templating and capping agent and favors the growth of nanosheets. On the other hand, C1‐im functions only as a capping agent and thus favors the formation of polyhedra, especially octahedra.  相似文献   

12.
The ability to tune interparticle spatial properties of nanoparticle assemblies is essential for the design of sensing materials toward desired sensitivity and selectivity. This paper reports findings of an investigation of molecularly mediated thin film assemblies of metal nanoparticles with controllable interparticle spatial properties as a sensing array. The interparticle spatial properties are controlled by a combination of alpha,omega-difunctional alkyl mediators (X-(CH(2))(n)-X) such as alkyl dithiols, dicarboxylate acids, and alkanethiol shells capped on nanoparticles. Alkanethiolate-capped gold and gold-silver alloy nanoparticles (2-3 nm) were studied as model building blocks toward the thin film assemblies, whereas the variation of alkyl chain length manipulates the interparticle spacing. The thin films assembled on an interdigitated microelectrode array platform are characterized for determining their responses to the sorption of volatile organic compounds (VOCs). The correlation between the response sensitivity and the interparticle spacing properties revealed not only a clear dependence of the sensitivity on alkyl chain length but also the occurrence of a dramatic change of the sensitivity in a region of chain length for the alkyl mediator comparable with that of the capping alkyl chains. This finding reflects a balance between the interparticle chain-chain cohesive interdigitation and the nanostructure-vapor interaction which determines the relative change of the electrical conductivity of the inked nanoparticle thin film in response to vapor sorption. The results, along with statistical analysis of the sensor array data in terms of sensitivity and selectivity, have provided important insights into the detailed delineation between the interparticle spacing and the nanostructured sensing properties.  相似文献   

13.
Subphthalocyaninatoboron complexes with six long‐chain alkylthio substituents in their periphery are applicable for the formation of self‐assembled monolayers (SAMs) on gold. Such films are prepared from solution with the axially chlorido‐substituted derivatives and characterised by near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy, X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The results are in accord with the formation of SAMs assembled by the chemisorption of both covalently bound thiolate‐type as well as coordinatively bound thioether units. The adsorbate molecules adopt an essentially flat adsorption geometry on the substrate, resembling a suction pad on a surface.  相似文献   

14.
Changes in the optical properties of CdTe nanocrystals through selective surface exchange reaction with thiolate molecules in the organic phase are studied with an aim to investigate the mechanism and the role of organic ligands. The reaction was mediated by dissociation of Te anions via oxidation in air from CdTe nanocrystals, followed by attachment of thiolate molecules in a 1:1 stoichiometric manner. This results in a gradual shell formation and a corresponding decrease in the size of the fluorescent CdTe cores, which induces a blue shift of both the absorption edge and emission wavelength in the visible region. A systematic study including the addition of ligands at different concentrations revealed that Te dissociation is the rate-determining step for the process and the degree of blue shift is significantly dependent on the amount of organic ligands present. The process could also be kinetically controlled through the addition of an excess amount of thiolate ligands, allowing systematic tuning of the emission properties of nanocrystals under ambient conditions.  相似文献   

15.
Photoactive spherical metal and semiconductor nanoparticles (NPs) are smart systems that exhibit unique properties, such as a high surface‐to‐volume ratio, a broad absorption spectrum and size‐dependent properties. They are capped with a considerable number of ligands required to give rise to stable organic and aqueous NP colloidal solutions. In addition, the ligands can also be used to introduce functionality at the NP periphery. In this case, the NP could act as a 3D‐scaffold, which would make a high local concentration of a functional moiety at the NP periphery possible, moreover, the photophysical properties of the NP could be tuned. The combined action of the organic capping and the inorganic core can exert an encapsulating effect, i.e. the organic capping could establish specific interactions with nearby molecules and this would enable the molecules to approach or interact with the NP surface. Therefore, the NP core and the ligand can work together providing the overall hybrid system with new properties or capacities. The relevance of the cooperative action between the spherical photoactive core and the capping are shown in this report with several recent examples developed by my research group, some of them in collaboration with other groups.  相似文献   

16.
Cycloparaphenylenes (CPPs) are nanosized structures with unique isolated and bulk properties, and are synthetic targets for the template‐driven bottom‐up synthesis of carbon nanotubes. Thus, a systematic understanding of the supramolecular order at the nanoscale is of utmost relevance for molecular engineering. In this study, it is found that intramolecular noncovalent (dispersion) interactions must be taken into account for obtaining accurate estimates of the structural and optoelectronic properties of [n]CPP compounds, and their influence as the number of repeat units increases from n=4 to n=12 is also analyzed, both in the gas phase and in solution. The supramolecular self‐assembly, for which both intra‐ and intermolecular noncovalent interactions are relevant, of [6]CPP is also investigated by calculating the binding energies of dimers taken along several crystal directions. These are also used to estimate the cohesive energy of the crystal, which is compared to the value obtained by means of dispersion‐corrected DFT calculations using periodic boundary conditions. The reasonable agreement between both computational strategies points towards a first estimate of the [6]CPP cohesive energy of around 50 kcal mol?1.  相似文献   

17.
Gold nanorods in aqueous solution are generally surrounded by surfactants or capping agents. This is crucial for anisotropic growth during synthesis and for their final stability in solution. When CTAB is used, a bilayer has been evidenced from analytical methods even though no direct morphological characterization of the precise thickness and compactness has been reported. The type of surfactant layer is also relevant to understand the marked difference in further self-assembling properties of gold nanorods as experienced using 16-EO(1)-16 gemini surfactant instead of CTAB. To obtain a direct measure of the thickness of the surfactant layer on gold nanorods synthesized by the seeded growth method, we coupled TEM, SAXS, and SANS experiments for the two different cases, CTAB and gemini 16-EO(1)-16. Despite the strong residual signal from micelles in excess, it can be concluded that the thickness is imposed by the chain length of the surfactant and corresponds to a bilayer with partial interdigitation.  相似文献   

18.
In this work, the effects of thiolate ligands (‐SR, e.g., chain length and functional moiety) on the accessibility and catalytic activity of thiolate‐protected gold nanoclusters (e.g., Au25(SR)18) for 4‐nitrophenol hydrogenation is reported. The data suggest that Au25(SR)18 bearing a shorter alkyl chain shows a better accessibility to the substrates (shown by shorter induction time, t0) and a higher catalytic activity (shown by higher apparent reaction rate constant, kapp). The functional moiety of the ligands is another determinant factor, which clearly suggests that ligand engineering of Au25(SR)18 would be an efficient platform for fine‐tuning its catalytic properties.  相似文献   

19.
The very rapid, usually diffusion-controlled, self-aggregation of nascent molecules of semiconductors (MX) or metals (M) in solution represents an experimental challenge for arresting the growth of the particles at a desired size. Unfortunately, the typical remedy used, namely capping of the clusters with a protective coating, alters their intrinsic electronic and optical properties. An additional defect of capping's virtue is that it prevents the observation of further cluster growth—which is especially important in the subnanometer (molecular) size regime, where particle growth is associated with dramatic changes in structure, surface states, and transition energy.

We have developed a novel method for the preparation of subnanometer size uncapped quantum dots, which also allows the monitoring of their growth up to several hundreds of nanometer in diameter. The essence of the method is the initial encapsulation of the metal ion (M+) in synthetic vesicles (liposomes) and the placement of the anion (X) in the bulk solution. Exposure of the suspension to a rectangular pulse of a high-voltage homogenous electric field E of suitable intensity and duration causes the formation of transient pores in the vesicle's bilayer (electroporation). A fraction of the metal ions that are ejected through the pores react with the anions in the bulk, and the freshly created monomers (MX) adsorb on the exterior surface of the vesicle. On the vesicle surface, the self-aggregation is slowed down to the hour and day timescales which allows for convenient spectral monitoring of the growth of the clusters.

The discussion will focus on the behavior of vesicles in an electric field, the mechanism of electroporation, and our experimental and density functional theoretical findings of previously unobserved, unusual spectroscopic properties of subnanometer size AgBr, CdS, PbS, ZnS and gold quantum dots.  相似文献   


20.
The melting and crystallization of extended‐chain crystals of polyethylene are analyzed with standard differential scanning calorimetry and temperature‐modulated differential scanning calorimetry. For short‐chain, flexible paraffins and polyethylene fractions up to 10 nm length, fully reversible melting was possible for extended‐chain crystals, as is expected for small molecules in the presence of crystal nuclei. Up to 100 nm length, full eutectic separation occurs with decreasingly reversible melting. The higher‐molar‐mass polymers form solid solution crystals and retain a rapidly decreasing reversible component during their melting that decreases to zero about 1.5 K before the end of melting. An attempt is made to link this reversible melting to the known, detailed morphology and phase diagram of the analyzed sample that was pressure‐crystallized to reach chain extension and practically complete crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2219–2227, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号