首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A novel microfabricated multichannel emitter for electrospray ionization mass spectrometry (ESI-MS) was implemented with polydimethylsiloxane (PDMS) using a soft lithography technique. The emitters are formed as electrospray tips along a thin membrane on the edge of the device with channels of 100 microm x 30 microm dimensions. The electrospray performance of the PDMS emitters for a single channel device and a four channel device interfaced with a time-of-flight mass spectrometer was evaluated for detecting the molecular weight of reference peptides (angiotensin I and bradykinin). The emitters were durable at the flow rate of 1-20 microL min(-1) for more than 30 h of continuous electrospray with limit of detection of 1 microM (S/N 18). This microfabrication method for a PDMS multichannel emitter as an integral part of a microfluidic device will facilitate development of more complex microfluidic analysis systems using ESI-MS.  相似文献   

2.
Hybrid capillary-poly(dimethysiloxane)(PDMS) microchips with integrated electrospray ionization (ESI) tips were directly fabricated by casting PDMS in a mould. The shapes of the emitter tips were drilled into the mould, which produced highly reproducible three-dimensional tips. Due to the fabrication method of the microfluidic devices, no sealing was necessary and it was possible to produce a perfect channel modified by PolyE-323, an aliphatic polyamine coating agent. A variety of different coating procedures were also evaluated for the outside of the emitter tip. Dusting graphite on a thin unpolymerised PDMS layer followed by polymerisation was proven to be the most suitable procedure. The emitter tips showed excellent electrochemical properties and durabilities. The coating of the emitter was eventually passivated, but not lost, and could be regenerated by electrochemical means. The excellent electrochemical stability was further confirmed in long term electrospray experiments, in which the emitter sprayed continuously for more than 180 h. The PolyE-323 was found suitable for systems that integrate rigid fused silica and soft PDMS technology, since it simply could be applied successfully to both materials. The spray stability was confirmed from the recording of a total ion chromatogram in which the electrospray current exhibited a relative standard deviation of 3.9% for a 30 min run. CE-ESI-MS separations of peptides were carried out within 2 min using the hybrid PDMS chip resulting in similar efficiencies as for fused silica capillaries of the same length and thus with no measurable band broadening effects, originating from the PDMS emitter.  相似文献   

3.
This study presents a microbead-packed PDMS microchip with an integrated electrospray emitter for sample pretreatment prior to sheathless ESI-MS. We prove the concept of analytical functions integrated onto a cm-sized area of a single bulk material. The microchip consists of two PDMS substrates replicated from SU-8 fabricated silicon wafer masters, bonded together after oxidation by corona discharge treatment. The channel within the microchip contains a grid structure that was used to trap 5 microm hypercross-linked polystyrene beads. The beads acted as a medium for sample desalting and enrichment. Electrical contact for the sheathless ESI process was achieved by coating the integrated emitter with conductive graphite powder after applying a thin layer of PDMS as glue. The coating as well as the bond of the PDMS structures showed excellent durability. A continuous spray was obtained from the microchip for over 800 h in a long-term electrospray stability experiment. Desalting and enrichment of neuropeptides from a physiological salt solution was successful by loading the sample onto the packed beads, followed by a washing and an eluting step. The results were obtained and evaluated using a TOF MS. An LOD of approximately 20 fmol (loaded onto the beads) for angiotensin II was obtained from a sample of neuropeptides dissolved in physiological salt solution.  相似文献   

4.
A polymer microchip with an open tip for electrospray mass spectrometry is presented. The tip consists of a groove with parallel walls where a droplet can form at the end surface. A lid covers the whole chip except at the microchannel tip, which is left open. Poly(dimethylsiloxane) (PDMS) microchips were cast using a nickel mould which in turn was replicated from a dry etched silicon wafer. Tips with microchannel widths of around 50 microm could easily be replicated. Since the tip had no cover, the assembly of microchip and cover was simplified. A total ion current variation of 5% during 300 s was achieved for a 1 microM myoglobin solution. The non-complex design of the cover makes it suitable for versatile tests of chip prototypes. The nickel mould was found to be useful for PDMS microstructure fabrication. Also, such a robust mould allows casting electrospray tips in more rigid thermoset materials.  相似文献   

5.
Microfabricated polydimethylsiloxane (PDMS) emitters for electrospray ionization mass spectrometry (ESI-MS) were implemented as tips along the edge of the PDMS device by three methods which utilize soft lithography processes. These microfabrication methods for producing PDMS emitters as an integral part of a microfluidic device will facilitate development of more complex microfluidic analysis systems using ESI-MS.  相似文献   

6.
A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270 V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities.  相似文献   

7.
A novel microfabricated device for isoelectric focusing (IEF) incorporating an optimized electrospray ionization (ESI) tip was constructed on polycarbonate plates using laser micromachining. The IEF microchip incorporated a separation channel (50 micro x 30 micro x 16 cm), three fluid connectors, and two buffer reservoirs. Electrical potentials used for IEF focusing and electrospray were applied through platinum electrodes placed in the buffer reservoirs, which were isolated from the separation channel by porous membranes. Direct ESI-mass spectrometry (MS) using electrosprays produced directly from a sharp emitter "tip" on the microchip was evaluated. The results indicated that this design can produce a stable electrospray and that performance was further improved and made more flexible with the assistance of a sheath gas and sheath liquid. Error analysis of the spectral data showed that the standard deviation in signal intensity for an analyte peak was less than approximately 5% over 3 h. The production of stable electrosprays directly from microchip IEF device represents a step towards easily fabricated microanalytical devices. Microchannel IEF separations of protein mixtures were demonstrated for uncoated polycarbonate microchips. Direct microchannel IEF-ESI-MS was demonstrated using the microfabricated chip with an ion-trap mass spectrometer for characterization of protein mixtures.  相似文献   

8.
A nano-liquid chromatographic /tandem mass spectrometric (nanoHPLC/MS/MS) method has been developed for the sensitive determination of histamine, a vital neurotransmitter. The method involved pre-column derivatization of histamine with 7-fluoro-4-nitrobenzoxadiazole (NBD-F), thus increasing the hydrophobicity of the analyte and allowing it to be retained and stacked on a nanoelectrospay emitter packed with C18 reversed-phase particles. Sodium 1-heptanesulfonate, added as an ion-pairing reagent in the mobile phase for sample loading, was found to facilitate greatly the analyte retention. The packed nanoelectrospray emitter was easily prepared using fused-silica capillary of 75 microm i.d., and included creating an electrospray emitter tip and then slurry-packing a 5 cm long column with 5 microm silica-based particles. After sample loading, the mobile phase was changed for separation and a characteristic precursor-to-product ion transition, m/z 275 --> 258, was used for the quantification. A linear calibration curve in the range from 1.0-100 ng/mL histamine with an r2 value of 0.9995 was obtained. The detection limit was estimated to be 0.1 ng/mL histamine in water. In a preliminary validation, the method was applied to determine histamine in alcoholic beverages and rat brain tissues.  相似文献   

9.
We present a detailed optimization and characterization of the analytical performance of SU-8-based emitters for electrospray ionization mass spectrometry (ESI/MS). The improved SU-8 fabrication process presented here enhances patterning accuracy and reduces the time and cost of fabrication. All emitters are freestanding and enable sample delivery by both pressure-driven and spontaneous flows. The optimized emitter design incorporates a sharp, double-cantilevered tip implemented to the outlet of an SU-8 microchannel and provides highly sensitive ESI/MS detection. Moreover, the optimized design allows the use of relatively large microchannel dimensions (up to 200 x 50 microm(2), w x h) without sacrificing the detection sensitivity. This is advantageous with a view of preventing emitter clogging and enabling reproducible analysis. The measured limits of detection for the optimized emitter design were 1 nM for verapamil and 4 nM for Glu-fibrinopeptide B with good quantitative linearities between 1 nM and 10 microM (R(2) = 0.9998) for verapamil and between 4 nM and 3 microM (R(2) = 0.9992) for Glu-fibrinopeptide B. The measured tip-to-tip repeatability for signal intensity was 14% relative standard deviation (RSD) (n = 3; 5 microM verapamil) and run-to-run repeatability 4-11% RSD (n = 4; 5 microM verapamil) for all individual emitters tested. In addition, long-term stability of < 2% RSD was maintained for timescales of 30 min even under free flow conditions. SU-8 polymer was also shown to be chemically stable against most of the tested electrospray solvents.  相似文献   

10.
Following current trends in miniaturization of analytical chemistry, an inexpensive disposable analytical tool in the form of a liquid chromatography column fabricated on a poly(dimethyl siloxane) (PDMS) chip was created. Ease of fabricating the chromatography column was demonstrated by molding collocated monolithic support structures (COMOSS) directly in the column. Positive photo-resist, SPR 220, was used to create column structures on a negative relief master providing final channel dimensions of 2.7-5.2 microm wide by 10.0 microm deep, while monolithic dimensions were 9.8 x 9.8 x 10.0 microm - 12.3 x 12.3 x 10.0 microm. The ability to separate biological samples such as peptides from a tryptic digest of fluorescein isothiocyanate labeled bovine serum albumin (FITC-BSA) was shown. Separations in capillary electrochromatographic (CEC) mode were performed yielding column efficiencies of 4.0 x 10(5) plates/m.  相似文献   

11.
Wang P  Chen Z  Chang HC 《Electrophoresis》2006,27(20):3964-3970
The work presents the design of an integrated system consisting of a high-pressure electroosmotic (EO) micropump and a microporous monolithic emitter, which together generate a stable and robust electrospray. Both the micropump and electrospray emitter are fabricated using a sol-gel process. Upon application of an electric potential of sufficient amplitude (>2 kV), the pump delivers fluids with an electroosmotically induced high pressure (>1 atm). The same potential is also harnessed to electrostatically generate a stable electrospray at the porous emitter. Electrokinetic coupling between pump and spray produces spray features different from sprays pressurized by independent mechanical pumps. Four typical spray modes, each with different drop sizes and charge-to-mass ratios, are observed and have been characterized. Since the monolith is silica-based, this integrated device can be used for a variety of fluids, especially organic solvents, without the swelling and shrinking problems that are commonly encountered for polymer monoliths. The maximum pressure generated by a 100 microm id monolithic pump is 3 atm at an applied voltage of 5 kV. The flow rate can be adjusted in the range of 100 nL/min to 1 microL/min by changing the voltage. For a given applied voltage across the pump and emitter system, it is seen that there exists one unique flow rate for which flow balance is achieved between the delivery of liquid to the emitter by the pump and the liquid ejection from the emitter. Under such a condition, a stable Taylor cone is obtained. The principles that lead to these results are also discussed.  相似文献   

12.
We describe a novel electrospray tip design for MS which is fabricated completely out of SU-8 photoepoxy. A three-layer SU-8 fabrication process provides fully enclosed channels and tips. The tip shape and alignment of all SU-8 layers is done lithographically and is therefore very accurate. Fabrication process enables easy integration of additional fluidic functions on the same chip. Separation channels can be made with exactly the same process. Fluidic inlets are made in SU-8 during the fabrication process and no drilling or other postprocessing is needed. Channels have been fabricated and tested in the size range of 10 microm x 10 microm-50 microm x 200 microm. Mass spectrometric performance of the tips has been demonstrated with both pressure-driven flow and EOF. SU-8 microtips have been shown to produce stable electrospray with EOF in a timescale of tens of minutes. With pressure driven flow stable spray is maintained for hours. Taylor cone was shown to be small in volume and well defined even with the largest channel cross section. The spray was also shown to be well directed with our tip design.  相似文献   

13.
The physical processes underlying micro-electrospray (micro-ES) performance were investigated using a stainless steel (SS) emitter with a blunt tip. Sheathless micro-ES could be generated at a blunt SS tip without any tapering or sanding if ESI conditions were optimized. The Taylor cone was found to shrink around the inner diameter of the SS tubing, which permitted a low flow rate of 150 nL/min for sheathless microspray on the blunt tip (100 microm i.d. x 400 microm o.d.). It is believed that the wettability and/or hydrophobicity of SS tips are responsible for their micro-ES performance. The outlet orifice was further nipped to reduce the size of the spray cone and limit the flow rate to 50-150 nL/min, resulting in peptide detection down to attomole quantities consumed per spectrum. The SS emitter was also integrated into a polymethylmethacrylate microchip and demonstrated satisfactory performance in the analysis and identification of a myoglobin digest.  相似文献   

14.
This study develops a sheathless CE‐MS interface using a robust PDMS membrane emitter and liquid‐film electric conduction. A 3D mold was constructed for casting the device by using a one‐step casting procedure. The interface consisted of a 125 μm‐thick triangular emitter with a 50 μm‐diameter microchannel, a conducting reservoir, and a 375 μm‐diameter channel for assembling the separation capillary. The separation capillary was inserted into the 375 μm channel and connected to the emitter through the conducting reservoir. The electric contact for the CE outlet was established through a conductive liquid film in the space between the capillary terminus and the 375 μm channel. The one‐step casting procedure and using a membrane emitter instead of a tapered emitter produced an easily fabricated and robust interface. A stable electrospray was obtained from 30 to 350 nL/min. Analyzing a five‐peptide mixture in low‐EOF (60 nL/min) and high‐EOF (210 nL/min) conditions demonstrated the utility of the interface.  相似文献   

15.
This paper shows the in situ synthesis of an hexyl acrylate monolith in PDMS microfluidic devices and its subsequent use as stationary phase for electrochromatography on chip. To overcome the ability of PDMS material to absorb organic monomers, surface modification of the enclosed channels was realized by UV-mediated graft polymerization. This grafting procedure is based on the preliminary adsorption of a photoinitiator onto the PDMS surface and polymerization of charged monomers. Next, hexyl acrylate monoliths were cast in situ using photopolymerization process. The chromatographic behavior of the monolithic column was confirmed by the successful separation of derivatized catecholamines in the PDMS device using a 30 mm effective separation length (100 microm x 100 microm section). Efficiencies reached up to 200,000 plates per meter.  相似文献   

16.
A novel method for the manufacturing of microchips for on-chip combinations of electrochemistry (EC) and sheathless electrospray ionisation mass spectrometry (ESI-MS) is described. The technique, which does not require access to clean-room facilities, is based on the incorporation of an array of gold microcoil electrodes into a poly(dimethylsiloxane)(PDMS) microflow channel equipped with an integrated graphite based sheathless ESI emitter. Electrochemical measurements, which were employed to determine the electroactive area of the electrodes and to test the microchips, show that the manufacturing process was reproducible and that the important interelectrode distance in the electrochemical cell could to be adequately controlled. The EC-ESI-MS device was evaluated based on the ESI-MS detection of the oxidation products of dopamine. The results demonstrate that the present on-chip approach enables full potentiostatic control of the electrochemical cell and the attainment of very short transfer times between the electrochemical cell and the electrospray emitter. The transfer times were 0.6 and 1.2 s for flow rates of 1.0 and 0.5 microL min(-1), respectively, while the electrochemical conversion efficiency of the electrochemical cell was found to be 30% at a flow rate of 0.5 microL min(-1). To decouple the electrochemical cell from the ESI-MS high voltage and to increase the user-friendliness, the on-line electrochemistry-ESI-MS experiments were performed using a wireless Bluetooth battery-powered instrument with the chip floating at the potential induced by the ESI high voltage. The described on-chip EC-ESI-MS device can be used for fundamental electrochemical investigations as well as for applications based on the use of electrochemically controlled sample pretreatment, preconcentration and ionisation steps prior to ESI-MS.  相似文献   

17.
This paper compares the advantages and disadvantages of two different configurations for the extraction of triazines from water samples: (1) on-fibre solid-phase microextraction (SPME) coupled to conventional liquid chromatography (LC); and (2) in-tube SPME coupled to capillary LC. In-tube SPME has been effected either with a packed column or with an open capillary column. A critical evaluation of the main parameters affecting the performance of each method has been carried out in order to select the most suitable approach according to the requirements of the analysis. In the on-fibre SPME configuration the fibre coating was polydimethylsiloxane (PDMS)-divinylbenzene (DVB). The limits of detection (LODs) obtained with this approach under the optimized extraction and desorption conditions were between 25 and 125 microg/L. The in-tube SPME approach with a C18 packed column (35 mm x 0.5 mm I.D., 5 microm particle size) connected to a switching micro-valve provided the best sensitivity; under such configuration the LODs were between 0.025 and 0.5 microg/L. The in-tube SPME approach with an open capillary column coated with PDMS (30 cm x 0.25 mm I.D., 0.25 microm of thickness coating) connected to the injection valve provided LODs between 0.1 and 0.5 microg/L. In all configurations UV detection at 230 nm was used. Atrazine, simazine, propazine, ametryn, prometryn and terbutryn were selected as model compounds.  相似文献   

18.
A non-tapered open tubular emitter with 75 microm internal diameter (i.d.) and 360 microm external diameter (o.d.) was developed by simply grinding the exit aperture of a fused-silica capillary. The roughened emitter, with a relatively large aperture, generates stable electrospray signals (generally <5% relative standard deviation (RSD) for most conditions studied) at less than 500 nL/min flow rates, and was characterized with atomic force microscopy. The surface treatment greatly extends the operational range of an open tubular emitter to lower flow rates, compared to that of a cleaved capillary with similar dimensions. The stabilized nanoelectrospray is attributed to the increased surface roughness and modified wetting characteristics of the emitter exit resulting from grinding. Electrospray performance was evaluated, and as a result of the enhanced sensitivity from a roughened emitter, five femtomoles of leucine enkephalin were detected at a 50 nL/min flow rate with a signal to noise (S/N) ratio of 48. Furthermore, trypsin-digested bovine serum albumin (BSA) was used to demonstrate the application of the emitter in protein identification, giving a sequence coverage of 60%. These emitters are robust, and may become a facile alternative to tapered emitters at moderate nano flow rates (e.g. 50 to 500 nL/min).  相似文献   

19.
We report surprising surface-induced torsional alignment of polydimethylsiloxane (PDMS) chains in contact with the muscovite (001) mica surface with and without confinement. The alignment was measured by polarized confocal Raman spectroscopy over diffraction-limit circular spots with approximately 0.3 microm diameter. Our discussion here focuses on the intense symmetric methyl-group vibration centered at 2907 cm(-1), whose Raman scattering intensity is found to depend on whether incident light is polarized in the x or y direction of the surface, the x direction being parallel to one of the mica optical axes. Furthermore, the Raman peak broadens significantly relative to that of bulk PDMS while remaining Lorentzian in shape, implying slower but homogeneous vibrational dephasing. However, the preferred orientation differs, apparently stochastically, from spot to spot on the surface. Possible origins of this heterogeneous surface-induced structure are discussed.  相似文献   

20.
On-chip absorption measurements using an integrated waveguide   总被引:2,自引:0,他引:2  
Square hollow waveguides are used to integrate measurement of absorption with chip-based electrophoresis. The 50x50 microm liquid channel and 50x50 microm waveguide are etched as a negative pattern into a silicon master and replicated as a positive in poly-dimethylsiloxane (PDMS). The uniform refractive index of the chip prevents guiding by total internal reflection. Instead, light at 488 nm is guided by reflection at the air-PDMS interface. The waveguide has a 60% efficiency over a distance of 3.2 cm. Separation of fluorescein and the dye BODIPY is demonstrated. A detection limit (S/N=3) of 200 microM fluorescein is obtained using a 50 microm pathlength and a simple photocell detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号