首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
微藻脂肪合成与代谢调控   总被引:3,自引:0,他引:3  
随着能源与环境问题的日益严峻,利用微藻生产生物柴油已经成为研究者们关注的焦点。与传统油料作物相比,微藻具有生长速度快、含油量高、不占用耕地等优势,是极具潜力的生物燃料生产原料。虽然许多微藻在压力条件下会在细胞内积累脂肪,特别是中性脂肪三酰甘油(TAG),它是生产生物柴油的主要原料,但目前对于微藻脂肪的合成和代谢调控还了解的很少。为了更好地理解和操纵微藻脂肪代谢以增强脂肪积累,本文综述了微藻脂肪合成与代谢调控的研究进展,包括TAG生物合成途径,提高脂肪积累的生化调控和基因工程策略,阐述了营养控制对脂肪积累的影响,总结了增强脂肪酸合成途径、增强Kennedy途径、调控TAG旁路途经、抑制脂肪合成的竞争途径、抑制脂肪的分解代谢等5种基因工程策略,同时也对微藻脂肪代谢研究的发展进行了展望。  相似文献   

2.
温室效应与石化能源紧缺已成为全球问题,生物燃料作为一种可再生且环境友好的替代能源受到人们的普遍关注。不少微藻油含量高,环境适应性强,净碳值几乎为零,被认为是生物质能,尤其生物柴油最重要的原料来源之一。本文综述了油脂微藻的国内外研究现状,并对高油脂微藻藻种筛选、高密度培养,以及提高微藻油脂含量和产油速率的可能方法进行了讨论;阐述了采用基因工程技术调控微藻脂类代谢途径生产高油脂的可能性;最后介绍了以CO2废气为碳源,膜生物反应器强化微藻培养技术,为进一步降低微藻产油成本,提高微藻生物柴油经济性提出了一条极有可能实现工业化的潜在高效生产途径。  相似文献   

3.
温室效应与石化能源紧缺已成为全球问题,生物燃料作为一种可再生且环境友好的替代能源受到人们的普遍关注。不少微藻油含量高,环境适应性强,净碳值几乎为零,被认为是生物质能,尤其是生物柴油最重要的原料来源之一。本文综述了油脂微藻的国内外研究现状,并对高油脂微藻藻种筛选、高密度培养,以及提高微藻油脂含量和产油速率的可能方法进行了讨论;阐述了采用基因工程技术调控微藻脂类代谢途径生产高油脂的可能性;最后介绍了以CO2废气为碳源,膜生物反应器强化微藻培养技术,为进一步降低微藻产油成本,提高微藻生物柴油经济性提出了一条极有可能实现工业化的潜在高效生产途径。  相似文献   

4.
张芳  程丽华  徐新华  张林  陈欢林 《化学进展》2012,(10):2062-2072
微藻具有光合效率高、生长周期短、油含量高等特性,是一种极具前景的生物柴油大宗原料。藻体采收和油脂提取是决定微藻柴油生产成本的关键环节,此下游技术的改进对提高微藻产油的经济性意义重大。本文综述了国内外微藻培养液的浓缩采收方法,并对絮凝沉降、絮凝气浮、离心和过滤等方法的作用机制和采收效率进行比较;阐述了目前微藻油脂的提取技术,从操作条件和能量消耗角度分别对有机溶剂、超临界和亚临界法进行评价;特别介绍了一种同时实现微藻生长和油脂提取的新型微藻油脂原位萃取法;最后总结了微藻能源下游技术中存在的主要问题和今后的发展方向,为进一步提高微藻生物柴油经济性提出参考性意见。  相似文献   

5.
禹伟  高教琪  周雍进 《色谱》2019,37(8):798-805
构建微生物细胞工厂是化学品、生物能源以及药物分子可持续生产的可行性策略。然而,微生物的代谢复杂、调控严谨,制约着目标产物高效合成。蛋白质组学和代谢组学可以从系统生物学角度分析酶和代谢物组分,从而理解复杂的生物系统,为微生物代谢工程改造提供重要线索。该文介绍了蛋白质组学和代谢组学在微生物代谢工程中的应用,包括基因组尺度代谢模型构建、菌株生物合成优化、指导菌株耐受性改造、限速步骤预测、植物次级代谢途径挖掘,从而为微生物合成天然产物提供新的基因或途径。在此基础上,该文还展望了生物大数据未来的发展方向。  相似文献   

6.
稀土及其化合物早已被广泛应用于农业和医药业等生产实践中,多年的稀土生物无机化学研究表明:稀土元素能够增强植物光合作用,促进根系吸收,调节激素和氮代谢,抑制细菌繁殖等。稀土能够选择生物代谢中关键的生物分子的靶位点进行结合或取代反应,调控生物分子的功能和行为。从而在植物和微生物体内发挥了重要的生物学功能。然而,过量的稀土会对机体的生长带来不利的影响,为了在生产实践中更加科学和安全地应用稀土的生物功能,稀土最适剂量的探究及其在生物体内积累效应的研究将会是下个阶段的研究重点。  相似文献   

7.
华根霉全细胞脂肪酶催化合成生物柴油   总被引:1,自引:0,他引:1  
贺芹  徐岩  滕云  王栋 《催化学报》2008,29(1):41-46
比较了5种不同商品化脂肪酶和自制的华根霉CCTCCM201021全细胞脂肪酶(RCL)催化油脂合成生物柴油的转化效果,结果表明,RCL能有效应用于无溶剂体系催化合成生物柴油.在无溶剂体系中对该酶催化生物柴油的转酯化反应工艺进行优化,考察了甲醇用量、体系含水量、酶的添加量和反应温度对生物柴油收率的影响,使生物柴油最终收率大于86.0%.在有机溶剂体系中选择不同有机溶剂作为助溶剂进行转酯化反应,发现logP值在4.0~4.5的有机溶剂具有较好的转化效果.其中以正庚烷为助溶剂的转酯化反应具有最高的生物柴油收率86.7%.在无溶剂体系中RCL催化转化油酸和模拟高酸价油脂合成脂肪酸甲酯的研究表明,该酶具有很好的催化合成生物柴油的潜力.  相似文献   

8.
简单介绍了生物柴油的生产原料,综述了用废弃油脂生产生物柴油的现状和方法。废弃油脂生产生物柴油的方法主要有物理法和化学法,物理法主要有掺和法和微乳法,化学法主要有热裂解法和酯交换法。目前生产中采用化学法的酯交换法、以酸碱两步催化法的工艺为主,而生物酶法和超临界法是研究热点。  相似文献   

9.
概述了微藻生物能源技术中的微藻规模化培养的研究现状,从藻种筛选、代谢机理、培养条件和光生物反应器几个不同的角度阐述了影响微藻规模化培养的因素,为微藻生物能源的发展及光生物反应器的研发提供建议与思路.  相似文献   

10.
将强酸性阳离子交换树脂加入塔尔油脂肪酸和甲醇混合液中,并在超声波辐射辅助下得到生物柴油,对生物柴油的制备工艺和性能进行研究,同时建立动力学模型。结果表明,超声波辐射的辅助强化,能有效提高生物柴油的得率;在反应温度65℃、反应时间1h、甲醇与TOFA摩尔比为10∶1、脱水剂用量为TOFA6%、树脂NKC-9用量为TOFA40%的最佳工艺条件下,反应平衡常数可达11.18,生物柴油得率为90.0%。建立的动力学模型补充了超声波辐射辅助酯化反应动力学参数,并用此模型解释了各工艺参数呈现的规律。以廉价的制浆黑液回收物塔尔油脂肪酸为原料制备生物柴油,能有效地降低生物柴油价格,提高其市场竞争力,实现塔尔油高附加值利用,具有良好的发展前景。  相似文献   

11.
Microalgal oil is a potential energy source because it can be easily converted to fatty acid methyl ester or hydrocarbon type of diesel, and it is produced with relatively higher productivity compared with oil from plants and animals. Heterotrophic growth of microalgae is superior due to its high final product concentration; however, the cost of the raw materials is unacceptable if sugar is utilized as the carbon source. The aim of this study is to optimize the lipid accumulation of Chlorella protothecoides by using carbon sources other than glucose in heterotrophic and mixotrophic cultures. Different factors such as different carbon sources, carbon to nitrogen ratio, initial pH level, salinity, and rotational speed are studied in affecting the cell growth and the oil accumulation. Our experiments revealed that the heterotrophic and mixotrophic cultures of C. protothecoides grew better than autotrophic cultures. C. protothecoides can grow on glycerol or acetate, as well as on glucose. Several stress factors were confirmed or discovered to significantly increase the lipid content of microalgae cells. The replacement of glycerol and acetate as carbon sources for microalgae cultivations provides potential for waste utilization: glycerol from biodiesel industry and acetate from biohydrogen production.  相似文献   

12.

Background

The regulation of lipid biosynthesis is essential in photosynthetic eukaryotic cells. This regulation occurs during the direct synthesis of fatty acids and triacylglycerols (TAGs), as well as during other controlling processes in the main carbon metabolic pathway.

Results

In this study, the mRNA levels of Chlamydomonas citrate synthase (CrCIS) were found to decrease under nitrogen-limited conditions, which suggests suppressed gene expression. Gene silencing by RNA interference (RNAi) was conducted to determine whether CrCIS suppression affected the carbon flux in TAG biosynthesis. Results showed that the TAG level increased by 169.5%, whereas the CrCIS activities in the corresponding transgenic algae decreased by 16.7% to 37.7%. Moreover, the decrease in CrCIS expression led to the increased expression of TAG biosynthesis-related genes, such as acyl-CoA:diacylglycerol acyltransferase and phosphatidate phosphatase. Conversely, overexpression of CrCIS gene decreased the TAG level by 45% but increased CrCIS activity by 209% to 266% in transgenic algae.

Conclusions

The regulation of CrCIS gene can indirectly control the lipid content of algal cells. Our findings propose that increasing oil by suppressing CrCIS expression in microalgae is feasible.
  相似文献   

13.
Meroterpenoids are a class of fungal natural products that are produced from polyketide and terpenoid precursors. An understanding of meroterpenoid biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has previously been found to produce two meroterpenoids, austinol and dehydroaustinol. Using targeted deletions that we created, we have determined that, surprisingly, two separate gene clusters are required for meroterpenoid biosynthesis. One is a cluster of four genes including a polyketide synthase gene, ausA. The second is a cluster of 10 additional genes including a prenyltransferase gene, ausN, located on a separate chromosome. Chemical analysis of mutant extracts enabled us to isolate 3,5-dimethylorsellinic acid and 10 additional meroterpenoids that are either intermediates or shunt products from the biosynthetic pathway. Six of them were identified as novel meroterpenoids in this study. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans meroterpenoids.  相似文献   

14.
Since the organism contains many redundant reactions, the minimal feasible metabolic network that contains the basic growth function is not the collection of reactions that associate the essential genes. To identify minimal metabolic reaction set is a challenging work in theoretical approach. A new method is presented here to identify the smallest required reaction set of growth-sustaining metabolic networks. The content and number of the minimal reactions for growth are variable in different random processes. Though the different carbon sources also vary the content of the reactions in the minimal metabolic networks, most essential reactions locate in the same metabolic subsystems, such as cofactor and prosthetic group biosynthesis, cell envelope biosynthesis, and membrane lipid metabolism.  相似文献   

15.
Lipid bodies are dynamic organelles of photosynthetic microalgae that can be used as the third generation resources for biofuel production.Biosynthesis of lipids can be influenced by different signalling processes.Visualisation of these processes can provide useful information about the fate and associated roles of lipid molecules in different biological systems.In photosynthetic organisms,however,studies of calcium ediated lipid biosynthesis is bottlenecked due to the limitation of proper and efficient technologies,which also include visualisation techniques.Currently,most studies to visualise lipid droplets in vivo have used traditional dyes,and proper visualisation of lipid drops is hindered by dye-specific limitations.This hurdle could be overcome by using recently developed aggregation-induced emission biooprobes.This review reveals current knowledge gaps in the studies of lipid drops and calcium ions in microalgae,as calcium signaling is important secondary messenger to detect a wide variety of environmental stimuli in plant and animal cells.To obtain insight into the mechanisms of these processes,the merits and demerits of currently available visualisation techniques for lipid drops and calcium are also detailed.Finally,opportunities and possibilities are proposed to recommend further improvement of techniques for detecting the role of calcium during lipid formation in microalgae for biofuel production.  相似文献   

16.
The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.  相似文献   

17.
Microbial production can be advantageous over the extraction of phytoterpenoids from natural plant sources, but it remains challenging to rationally and rapidly access efficient pathway variants. Previous engineering attempts mainly focused on the mevalonic acid (MVA) or methyl-d-erythritol phosphate (MEP) pathways responsible for the generation of precursors for terpenoids biosynthesis, and potential interactions between diterpenoids synthases were unexplored. Miltiradiene, the product of the stepwise conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP) catalyzed by diterpene synthases SmCPS and SmKSL, has recently been identified as the precursor to tanshionones, a group of abietane-type norditerpenoids rich in the Chinese medicinal herb Salvia miltiorrhiza . Here, we present the modular pathway engineering (MOPE) strategy and its application for rapid assembling synthetic miltiradiene pathways in the yeast Saccharomyces cerevisiae . We predicted and analyzed the molecular interactions between SmCPS and SmKSL, and engineered their active sites into close proximity for enhanced metabolic flux channeling to miltiradiene biosynthesis by constructing protein fusions. We show that the fusion of SmCPS and SmKSL, as well as the fusion of BTS1 (GGPP synthase) and ERG20 (farnesyl diphosphate synthase), led to significantly improved miltiradiene production and reduced byproduct accumulation. The MOPE strategy facilitated a comprehensive evaluation of pathway variants involving multiple genes, and, as a result, our best pathway with the diploid strain YJ2X reached miltiradiene titer of 365 mg/L in a 15-L bioreactor culture. These results suggest that terpenoids synthases and the precursor supplying enzymes should be engineered systematically to enable an efficient microbial production of phytoterpenoids.  相似文献   

18.
Flavonoids belong to a class of plant secondary metabolites that have a polyphenol structure. Flavonoids show extensive biological activity, such as antioxidative, anti-inflammatory, anti-mutagenic, anti-cancer, and antibacterial properties, so they are widely used in the food, pharmaceutical, and nutraceutical industries. However, traditional sources of flavonoids are no longer sufficient to meet current demands. In recent years, with the clarification of the biosynthetic pathway of flavonoids and the development of synthetic biology, it has become possible to use synthetic metabolic engineering methods with microorganisms as hosts to produce flavonoids. This article mainly reviews the biosynthetic pathways of flavonoids and the development of microbial expression systems for the production of flavonoids in order to provide a useful reference for further research on synthetic metabolic engineering of flavonoids. Meanwhile, the application of co-culture systems in the biosynthesis of flavonoids is emphasized in this review.  相似文献   

19.
There is increasing interest in using microalgae as a lipid feedstock for the production of biofuels. Lipids used for these purposes are triacylglycerols that can be converted to fatty acid methyl esters (biodiesel) or decarboxylated to “green diesel.” Lipid accumulation in most microalgal species is dependent on environmental stress and culturing conditions, and these conditions are currently optimized using slow, labor-intensive screening processes. Increasing the screening throughput would help reduce the development cost and time to commercial production. Here, we demonstrated an initial step towards this goal in the development of a glass/poly(dimethylsiloxane) (PDMS) microfluidic device capable of screening microalgal culturing and stress conditions. The device contained power-free valves to isolate microalgae in a microfluidic growth chamber for culturing and stress experiments. Initial experiments involved determining the biocompatibility and culturing capability of the device using the microalga Tetraselmis chuii. With this device, T. chuii could be successfully cultured for up to 3 weeks on-chip. Following these experiments, the device was used to investigate lipid accumulation in the microalga Neochloris oleabundans. It was shown that this microalga could be stressed to accumulate cytosolic lipids in a microfluidic environment, as evidenced with fluorescence lipid staining. This work represents the first example of microalgal culturing in a microfluidic device and signifies an important expansion of microfluidics into the biofuels research arena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号