首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
s-Triazolo[4,3-b Jpyridazine (I) photochemically reacted with dihydropyran; 2,3-dihydro-p-dioxin; 2,5-dihydrofuran; 2,5-dimethoxy-2,5-dihydrofuran; and 1,3-dioxep-5-ene to give a new series of substituted pyrrolo[1,2-b]-.s-triazoles (II-IX). In most reactions, two or more products were formed. The following compounds have been prepared from I: 9-methylene-4a,5,6,7,8a,9-hexahydropyrano[2,3 :4,5]pyrrolo[1,2-b]-s-triazole (Ha), the corresponding 9-cyanomethyl product (III), and 9-methylene-4a,7,8,8a-tetrahydro-6H,9H-pyrano[3′,2′:4,5]pyrrolo[1,2-b]-s-triazole (IIb) from dihydropyran; 9-methylene-4a,6,7,8a-tetrahydro-9H-p-dioxino[2′,3′:4,5]-pyrrolo[1,2-6]-s-triazole (IV) from 2,3-dihydro-p-dioxin; 8-methylene-4a,5,7a,8-tetrahydro-7H-furo[3′,4′:4,5]pyrrolo[1,2-b]-s-triazole (V) and the corresponding 8-cyanomethyl product (VI) from 2,5-dihydrofuran; 8-cyanomethyl-5,7-dimethoxy-4a,5,7a,8-tetrahydro-7H-furo[3′,4′:4,5]-pyrrolo[1,2-6]-s-lriazole (VII) from 2,5-dimethoxy-2,5-dihydrofuran; and 10-methylene-4a,5,9a,10-tetrahydro-9H-[1,3]dioxepino[5′,6′:4,5]pyrrolo[1,2-b]-s-triazole (VIII) and the corresponding 10-cyanomethyl product (IX) from 1,3-dioxep-5-ene. The addition of several other compounds (1,2,3,6-tetrahydropyridine, 1-acetylimidazole, 3-sulfolene, 2,3-dihydro-p-dithiin, and vinylene carbonate) was attempted, but no reactions were observed.  相似文献   

2.
s-Triazolo[4,3-b]pyridazine (I) photochemically reacted with cyclooctene, cyclododecene, bicyclo[2.2.2]oct-2-ene, bicyclo[2.2.1]hept-2-ene and indene to form tri and tetracyclic triazoles (II-X). Generally, two or more products were formed. For example the reaction with cyclooctene gave 4a,5,7,8,9,10,10a,11-octahydro-11-methylene-6H-cycloocta[4,5]-pyrrole[1,2-b]-s-triazole (II) and the corresponding 11-cyanomethyl product (III). When I was reacted with open chain alkenes, various isomers of the substituted pyrrolo[1,2-b]triazoles (XI-XV) were formed. Since the reaction was not stereospecific, cycloaddition must be a two step process.  相似文献   

3.
4,8-Dimethyl-6,7,8,9-tetrahydropyrido[4′,3′:4,5]thieno[2,3-e][1,2,4]triazolo[3,4-a]-4H-pyrimidin-5-ones, 7-methyl-2,3,6,7,8,9-hexahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrrolo[1,2-a]-1H, 10H-pyrimidin-10-one, 8-methyl-1,2,3,4,7,8,9,10-octahydropyrido[4′,3′:4,5]thieno[2,3-d]-11H-pyrimidin-11-one, and 9-methyl-2,3,4,5,8,9,10,11-octahydro[4′,3′:4,5]thieno[2,3-d]azepino-[1,2-a]-1H, 12H-pyrimidin-12-one which consist four new heterocyclic ring systems were synthesized from 2-amino-3-carbethoxy-5-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine.  相似文献   

4.
The preparation of 7-amino-2,3-dihydro-8-nitro-1H-pyrrolo[1,2-a]benzimidazole from 1,4-diacetamido-2,3-dinitrobenzene is described. Reaction of this compound with 2,5-dimethoxytetrahydrofuran produces 2,3-dihydro-8-nitro-7-N-pyrrolo-1H-pyrrolo[1,2-a]benzimidazole, which can be cyclised to produce two new heterocyclic ring systems, 9,10-dihydro-8H-pyrrolo[1,2-a]pyrrolo(1′,2′:1,2]imidazo[5,4-f]quinoxaline and 9,10-dihydro-8H-pyrrolo[2,1-c]pyrrolo[1′,2′:1,2]imidazo[4,5-h][1,2,4]benzotriazine. The corresponding diamine, 7,8-diamino-2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole undergoes a variety of condensation reactions to produce several new heterocyclic systems, for example, with formic acid, 1,7,8,9-tetrahydroimidazo-[4,5-e]pyrrolo[2,1-6]benzimidazole is formed and with diacetyl, 9,10-dihydro-2,3-dimethyl-8H-pyrrolo-[1′,2′:1,2]imidazo[5,4-y]quinoxaline is obtained.  相似文献   

5.
The oxidation of 3-aminothieno[2,3-b]pyridine-2-carboxamides with commercially available bleach leads to the formation of dimeric pyrrolo[2′,3′:4,5]thieno[2,3-b]pyridines (7a,14a-diamino-7,14-bis(aryl)-7,7a,14,14a-tetrahydro-6H,13H-pyrido[3″″,2″″:4?,5?]thieno[2?,3?:4″,5″]pyrrolo-[3″,4″:3′,4′]pyrrolo[2′,3′:4,5]thieno[2,3-b]pyridine-6,13-diones) in moderate yields (37–52%).  相似文献   

6.
Nitroso derivatives of imidazo[1,2-a]pyridine ( 11, 13, 14 ), imidazo[1,2-a]pyrimidine ( 15 ), imidazo[1,2-a]pyrazine ( 16 ), imidazo[1,2-b]pyrazole ( 17 ), and imidazo[1,2-b]-1,2,4-triazole ( 19 ) were obtained in good yields from α-ketohydroximoyl chlorides 3 and 2-aminopyridines ( 4–6 ), 2-aminopyrimidine ( 7 ), 2-aminopyrazine ( 8 ), 5-amino-3-phenylpyrazole ( 9 ), and 3-amino-2H-1,2,4-triazole ( 10 ), respectively. Under different conditions, the reaction of 3 with 3-amino-2H-1,2,4-triazole ( 10 ) and 2-aminopyrazine ( 8 ) afforded the noncyclized substitution products 18 and 22 , respectively. The structures of the products were assigned and confirmed on the basis of their elemental analyses, spectral data, and alternate synthesis wherever possible.  相似文献   

7.
Reactions of 1,3-disubstituted 5-aminopyrazole-4-carbonitrile derivatives 3a-o with dimethyl acetylenedicarboxylate in the presence of potassium carbonate in dimethyl sulfoxide gave the corresponding dimethyl 1,3-disubstituted pyrazolo[3,4-b]pyridine-5,6-dicarboxylates 4a-o which were allowed to react with excess hydrazine hydrate under ethanol refluxing conditions followed by heating at 250-300° to give 1,3-disubstituted 4-amino-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 7a-s in good yields. Similarly, 1,3-disubstituted 4-hydroxy-1H-pyrazolo[4′3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 10a-c were obtained from alkyl 1,3-disubstituted 5-aminopyrazole-4-carboxylates 8a-c . These tricyclic pyridazine derivatives were alternatively synthesized from 4-hydroxypyrrolo[3,4-e]pyrazolo[3,4-b]pyridine-5,7-diones 13a-c prepared by reactions of 5-aminopyrazoles (8e-g) with methyl 1-methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carboxylate (11a) followed by the Gould/Jacobs reaction. 1-Methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carbonitrile smoothly reacted with 2-aminobenzimidazoles to give the corresponding 5-amino-3-methyl-1H-pyrrolo[3′4′:4,5]pyrimido[1,2-a]benzimidazole-1,3(2H)-diones 16a-e , which were readily converted to the desired 12-aminopyridazino[4′,5′:4,5]pyrimido-[1,2-a]benzimidazole-1,4(2H,3H)-diones 17a-e in good yields. Other pyridazinopyrimidine derivatives were also obtained by the reaction of the corresponding 2-aminoheterocycles with the maleimide in good yields. Substituted anilines reacted 11b in refluxing methanol to give the corresponding methyl 4-phenylamino-1-methyl-2,5-dioxo-1H-pyrrole-3-carboxylates 25a-e which were converted in good yields to 2-methylpyrrolo[3,4-b]quinoline derivatives 26a-e by heating in diphenyl ether. Reaction of 26a-c with hydrazine hydrate gave 10-hydroxypyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 27a-e in good yields. The desired 10-aminopyridazino[4,5-b]pyridazine-1,4(2H,3H)-diones 30a-e were obtained in good yields by the chlorination of 4a-e with phosphorus oxychloride followed by aminolysis with 28% ammonium hydroxide. Some pyridazino[4,5-a][2.2.3]cyclazine-1,4(2H,3H)-diones 37a,b as luminescent compounds were synthesized via several steps from indolizine derivatives. The key intermediates, dimethyl 6-dimethylamino[2.2.3]cyclazine-1,2-dicarboxylates 34, 36 , were synthesized by the [8 + 2] cycloaddition reaction of the corresponding 7-dimethylaminoindolizines 33, 35 with dimethyl acetylenedicarboxylate in the presence of Pd-C in refluxing toluene. Some were found to be more efficient than luminol in light production. 4-Amino-3-methylsufonyl-1-phenyl-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-dione (7r) , 10-hydroxypyridazino[4,5-b]-quinoline-1,4(2H,3H)-diones 27a-e , and 10-aminopyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 30a-e showed the greatest chemiluminescence intensity in the presence of hydrogen peroxide peroxidase in a solution of phosphate buffer at pH 8.0.  相似文献   

8.
9H-Dithieno[2,1 -b:4,5-c′]tropylium ion (III) and 4ii-dithieno[1,2-b:4,5-c′]tropylium ion (IV) have been synthesized by ring-closure of 1-(4-carboxy-3-thienyl)-2-(3′-thienyl)ethane (IX) and 1-(4-carboxy-3-thienyl)-2-(2′-thienyl)ethane (XVI), respectively, followed by bromination-debrom-ination to 9H-cyclohepta[2,1-b:4,5-c′] dithiophen-9-one (XI) and 4H-cyclohepta[1,2-b:4,5-c′]-dithiophen-4-one (XVIII), and finally by reduction and hydride transfer. The tropylium ions III and IV were less stable than the [b,b′]-fused isomers previously studied.  相似文献   

9.
2‐Methyl‐3H‐indoles 1 cyclize with two equivalents of ethyl malonate 2 to form 4‐hydroxy‐11H‐benzo[b]pyrano[3,2‐f]indolizin‐2,5‐diones 3, whereas 2‐mefhyl‐2,3‐dihydro‐1H‐indoles 9 give under similar conditions regioisomer 8‐hydroxy‐5‐methyl‐4,5‐dihydro‐pyrrolo[3,2,1‐ij]pyrano[3,2‐c]quinolin‐7,10‐diones 10 . The pyrone rings of 3 and 9 can be cleaved either by alkaline hydrolysis to give 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 4 or 5‐acetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo‐[3,2,1‐ij]quinolin‐4‐ones 11 , respectively. Chlorination of 3 and 9 with sulfurylchloride gives under subsequent ring opening 7‐dichloroacetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 5 or 5‐dichloracetyl‐6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 12 . The dichloroacetyl group of 5 can be reduced with zinc to 7‐acetyl‐8‐hydroxy‐10H‐pyrido[1,2‐a]indol‐6‐ones 7. Treatment of the acetyl compounds 4, 7 and 11 with 90% sulfuric acid cleaves the acetyl group and yields 8‐hydroxy‐10H‐pyrido[1,2‐a]‐indol‐6‐ones 6 and 8 , and 6‐hydroxy‐2‐methyl‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 13 . Reaction of dichloroacetyl compounds 12 with sodium azide yields 6‐hydroxy‐2‐methyl‐5‐(1H‐tetrazol‐5‐ylcarbonyl)‐1,2‐dihydro‐4H‐pyrrolo[3,2,1‐ij]quinolin‐4‐ones 14 via intermediate geminal diazides.  相似文献   

10.
This paper describes the synthesis of 1-chloro-4-hydrazino-5H-pyridazino[4,5-b]indole ( 4 ) and some of the triazoles ( 6–8 ), tetrazoles ( 10–11 ), triazolotetrazoles ( 9 ) and bis-tetrazoles ( 12 ) derived from it. All of these were previously unknown compounds. Treating 1,4-dioxo-1,2,3,4-tetrahydro-5H-pyridazino[4,5-b]indole ( 1 ) with phosphorus oxychloride gave 1,4-dichloro-5H-pyridazino[4,5-b]indole ( 2 ), which reacts regioselectively with hydrazine to give compound 4 . The reactions of 4 with formic and acetic acids gave 6-chloro-11 H-1,2,4-triazolo[4,3-b]pyridazino[4,5-b]indoles ( 6a-6b ), respectively. Reaction of compound 6a with hydrazine gave 6-hydrazino-11H-1,2,4-triazolo[4,3–6]-pyridazino[4,5,-b]indole ( 8 ). This with nitrous acid gave 6-azido-11H-1,2,4-triazolo[4,3-b]pyridazino[4,5-b]-indole ( 9 ). Compound 4 reacted with nitrous acid to give 6-chloro-11H-tetrazolo[4,5-b]pyridazino[4,5-b]-indole ( 10 ), which gave 1,4-diazydo-5H-pyridazino[4,5-b]indole ( 12 ), through successive reactions with hydrazine and nitrous acid. All compounds were characterized by elemental analysis, ir and 1H-nmr spectra.  相似文献   

11.
Reactions of 2,5-dimethoxytetrahydrofuran with 3-aminothieno[2,3-b]pyridines afford a number of substituted 3-(1H-pyrrol-1-yl)thieno[2,3-b]pyridines. The possibility of the reaction and the yield of the product are determined by the character of a substituent in position 2 of thieno[2,3-b]pyridine. The Curtius rearrangement of 2-acylazido-3(1H-pyrrol-1-yl)thieno[2,3-b]pyridines yields 4,5-dihydropyrido[3",2":4,5]thieno[2,3-e]pyrrolo[1,2-a]pyrazin-4-ones. The molecular and crystal structures of ethyl 4-methoxymethyl-6-methyl-3-(1H-pyrrol-1-yl)thieno[2,3-b]pyridine-2-carboxylate were determined by X-ray diffraction analysis.  相似文献   

12.
We have established that when 5-chloro-6-[cyano(2,3-dihydro-1-R-benzo[d]azol-2-yl)methyl]-2,3-pyrazinedicarbonitriles are reacted with nucleophilic reagents (aliphatic and aromatic amines, hydrogen sulfide), annelation of the five-membered ring occurs on the [b] face of the pyrazine with formation of 6-amino-7-hetaryl-5-R-5H-pyrrolo[2,3-b]pyrazine-2,3-dicarbonitriles and 6-amino-7-(1H-benzo[d]imidazol-2-yl)thieno[2,3-b]pyrazine-2,3-dicarbonitrile respectively. Further heating with excess of acylating reagent leads to formation of a novel heterocyclic system 1H-benzo[4,5]imidazo[1,2-c]pyrazino[2',3':4,5]pyrrolo[3,2-e]pyrimidine. Reaction of vicinal dinitriles with hydrazine hydrate leads to the novel system 1H-pyrrolo[2',3':5,6]pyrazino[2,3-d]pyridazine.  相似文献   

13.
An auto oxidation-rearrangement product 4 was isolated from a high dilution reaction of ninhydrin with 3,4,5-trimethoxyaniline in water. A general synthesis of this compound and its derivatives 4–6 was devised by oxidation of tetrahydroindeno[1,2-b]indol-10-ones 1–3 with sodium periodate to give isoindolo[2,1-a]-indole-6,11-diones 4–6 in good yield. Compounds 4–6 can be easily transformed into spiro[1H-isobenzofuran-1,2′-2H-indole]-3,3′-diones 8–10 , spiro[2H-indole-2,1′-1H-isoindole]-3,3′-diones 11–13 and isoindole[1,2-a:2′,1′-b]pyrimidine-5,15-diones 15, 16 in high yields. Analogous reactions were performed on 3-amino-5a, 10a-dihydroxybenzo[b]indeno[2,1-d]furan-10-one ( 17 ) to give a dibenzoxocintrione 18 , spiro-[benzofuran-2,1′-isobenzofuran]-3,3′-dione 19 and an isoindol-1-one 20 .  相似文献   

14.
This report describes the synthesis of derivatives of two nitrogen tetracyclic ring systems, respectively 9H,11H-pyrimido[4,3-c]pyrrolo[1,2-a][1,4]benzodiazepine and spiro[piperidine-4,4′-[4H]pyrrolo[1,2-a][1,4]-benzodiazepine], by the use of the diethyl ester of 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4,4-diacetic acid as a synthon. This compound was obtained by condensation of 1-(2-aminomethylphenyl)-1H-pyrrole with diethyl 1,3-acetonedicarboxylate in acid medium. Pyrimidopyrrolobenzodiazepine derivatives were obtained by treating either the pyrrolobenzodiazepine 4,4-diacetate or the related 4-methyl-4-acetate with phenylisocyanate in boiling diethyl ether in the presence of sodium metal. The structure of 12,13-dihydro-11,13-dioxo-12-phenyl-9H,11H-pyrimido[4,3-c]pyrrolo[1,2-a][1,4]benzodiazepine, a product formed by loss of an acetate unit when 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4,4-diacetate, sodium metal and phenyl-isocyanate reacted in boiling xylene, was proved by catalytic reduction to 11,13-dioxo-12-phenyl-12,13,14,14a-tetrahydro-9H,11H-pyrimido[4,3-c]pyrrolo[1,2-a][1,4]benzodiazepine, which was synthesized by unambiguous pathway via 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4-acetate. The 2,6-dioxospiro[piperidine-4,4′-[4H]pyrrolo[1,2-a][1,4]benzodiazepine] derivatives were synthesized from the N-BOC derivative of 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepine-4,4-diacetic acid diethyl ester, by hydrolysis followed by treatment with 2 equivalents of 1,1′-carbonyldiimidazole (CDI) and then with aniline or benzylamine. Removal of BOC from the N-phenyl-2,6-dioxopiperidine derivative was obtained by heating the related spiroderivative in toluene in the presence of p-toluenesulphonic acid. Similar reaction failed when the N-benzyl-2,6-dioxopiperidine analog was used as substrate.  相似文献   

15.
This paper describes the synthesis of the previously unknown 11H-1,2,4-triazolo[4,3-b]pyridazino[4,5-b]indoles (2) and 11H-tetrazolo[4,5-b]pyridazino[4,5-b]indoles (3) from 4-hydrazino-5H-pyridazino[4,5-b]indoles (1) , as well as the synthesis of 1,2,4-triazolo[3,4-f]-1,2,4-triazino-[4,5-a]indoles (10) from 2-indolecarbohydrazide (4) . Compounds 2 were obtained by acylation of compounds 1 , followed of thermal cyclization and compounds 3 by treating compounds 1 with nitrous acid. The reactions of compound 4 with formic acid or ethyl orthoformiate gave 1,2-dihydro-1-oxo-1,2,4-triazino[4,5-a]indole (6) . Treating this last compound with phosphorus oxychloride or phosphorus pentasulfide, followed by hydrazine, gave 1-hydrazino-1,2,4-triazino-[4,5-a]indole (9) . Acylation of this last compound, followed of cyclization gave compounds 10 . All the compounds were characterized by elemental analysis and ir and 1H-nmr spectra.  相似文献   

16.

Ethyl 4,5-dioxo-2-phenyl-4,5-dihydro-1H-pynole-3-carboxylates reacted with indan-1,3-dione and 3-amino-1-phenylbut-2-en-1-one or 3-aminobut-2-enenitrile to give 3-benzoyl-2-methyl-2′,5-dioxo-5′-prienyl-1,1′,2′,5-tetrahydrospiro[indeno[1,2-b]pyridine-4,3′-pyrroles] and 2-methyl-2′,5-dioxo-5′-phenyl-1,1′,2′,5-tetrahydrospiro[indeno[1,2-b]pyridine-4,3′-pyrrole]-3-carbonitriles, respectively.

  相似文献   

17.
Diastereoselective [3+2] cycloaddition of azomethine ylide to 1,3-dimethyl-6-(2-oxo-1,2-dihydro-3H-indol-3-ylidene)-3a,9a-diphenyl-3,3a,9,9a-tetrahydroimidazo[4,5-e]thiazolo[3,2-b]-[1,2,4]triazine-2,7(1H,6H)-dione yields hitherto unknown 1,1′,3-trimethyl-3a,9a-diphenyl-3,3a,9,9a-tetrahydrodispiro(imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3″-indole)-2,2″,7(1H,1″H)-triones.  相似文献   

18.
This paper describes the synthesis of 1-hydrazinopyridazino[4,5-b]quinoxaline ( 10 ), tetrazolo[4,3-b]pyridazino[4,5-b]quinoxaline ( 11 ) and some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 . Starting with 2-ethoxycarbonyl-3-methylquinoxaline 1,4-dioxide ( 1 ), 1,2-dihydro-1-oxopyridazino[4,5-b]quinoxaline ( 5 ) was prepared by three different ways: (a) chlorination of 1 in acetic acid gave 2-ethoxycarbonyl-3-dichloromethylquinoxaline 1,4-dioxide, which reacts with an excess of hydrazine to give about 60% of 5 ; (b) oxidation of 1 with selenium dioxide gave 90% of 2-ethoxycarbonyl-3-formylquinoxaline 1,4-dioxide ( 3 ), which reacts with hydrazine to give 5 (63%); (c) compound 3 was treated with hydrazine to give 1,2-dihydro-1-oxopyridazino-[4,5-b]quinoxaline 1,4-dioxide ( 4 ) (70%), which by reduction with sodium dithionite gave 5 (80%). Compound 5 reacts with phosphorus pentasulfide or the Lawesson reagent to give 1,2-dihydro-1-thiocarbonylpyridazino[4,5-b]quinoxaline ( 9 ), which treated with hydrazine gave 5 (80%). This last compound reacts with nitrous acid to give 11 . Some hydrazones 12 from 10 are described. Heating the aldehyde hydrazones 12a,c,d with dimethylsulfoxide some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 were obtained. Compound 13a was also obtained in the reaction of 10 with benzoyl chloride. Reaction of 3 with phenylhydrazine gave 1,2-dihydro-1-oxo-2-phenylpyridazino[4,5-b]quinoxaline ( 6 ). Reactions of 5 with acetic anhydride and dimethylsulfate gave, respectively, 1-acetoxypyridazino[4,5-b]quinoxaline ( 8 ) and 1,2-dihydro-1-oxo-2-methylpyridazino-[4,5-b]quinoxaline ( 7 ). All the compounds were characterized by elemental analysis and 1H-nmr spectra. Compounds 5 and 10 showed antihypertensive activity in rats.  相似文献   

19.
Substituted 4-(2,5-dihydro-1H-pyrrol-3-yl)-1H-imidazoles were prepared from 5-amino-1-aryl-4-cyanoformimidoylimidazoles and cyanoacetamide, under mild experimental conditions. The pyrrolyl-imidazoles were cyclized to the corresponding 7,8-dihydroimidazo[4,5-b]pyrrolo[3,4-d]pyridines by reflux in ethanol, with catalysis by DBU. The same pyrrolyl-imidazoles were reacted with orthoesters, at room temperature and in the presence of sulfuric acid, to generate 3,7-dihydro-8H-imidazo[4,5-d]pyrrolo[3,2-f]diazepines in very good yield. Electrochemical studies of the imidazo[4,5-d]pyrrolo[3,2-f][1,3] diazepine derivatives were carried out. The reduction potential of 7-ethyl-3-(4-methoxyphenyl)-8-oxo-7,8-dihydro-3H-imidazo[4,5-d]pyrrolo[3,2-f][1,3] diazepine-9-carbonitrile was in the adequate range for presenting bioreduction properties.  相似文献   

20.
1-Alkyl-3-carboxyindole-2-acetic acid anhydrides (I) react with ethylenediamine and with o-phenylenediamine to give directly 10-alkylimidazo[3,2:1′,2′]pyrido[4,5-b]indol-5(1H)-ones (II) and 5,6-dihydro-5-alkyl-13H-indolo[2′,3′:4,5]pyrido[1,2-a]benzimidazol-13-one (V), respectively. However, anhydrides I react with o-aminophenol and with o-aminothiophenol to give carboxyindole-acetanilide derivatives IX, which can be cyclised to indolo[2′,3′:4,5]pyrido[2,1-b]benzoxazolone and indolo[2′,3′:4,5]pyrido[2,1-b]benzthiazolone (XI). Some derivatives of II and V were prepared to help in elucidating the structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号