首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Using directed in vitro protein evolution, we generated proteins that bound and antagonized the function of vascular endothelial growth factor receptor 2 (VEGFR2). Binders to human VEGFR2 (KDR) with 10-200 nM affinities were selected by using mRNA display from a library (10(13) variants) based on the tenth human fibronectin type III domain (10Fn3) scaffold. Subsequently, a single KDR binding clone (K(d) = 11 nM) was subjected to affinity maturation. This yielded improved KDR binding molecules with affinities ranging from 0.06 to 2 nM. Molecules with dual binding specificities (human/mouse) were also isolated by using both KDR and Flk-1 (mouse VEGFR2) as targets in selection. Proteins encoded by the selected clones bound VEGFR2-expressing cells and inhibited their VEGF-dependent proliferation. Our results demonstrate the potential of these inhibitors in the development of anti-angiogenesis therapeutics.  相似文献   

2.
The dynamic adsorption of human serum albumin (HSA) and plasma fibronectin (Fn) onto hydrophobic poly(hydroxymethylsiloxane) (PHMS) and the structures of adsorbed protein layers from single and binary protein solutions were studied. Spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation monitoring (QCM-D) together with atomic force microscopy (AFM) were used to measure the effective mass, thickness, viscoelastic properties, and morphology of the adsorbed protein films. Adsorbed HSA formed a rigid, tightly bound monolayer of deformed protein, and Fn adsorption yielded a thick, very viscoelastic layer that was firmly bound to the substrate. The mixed protein layers obtained from the coadsorption of binary equimolecular HSA-Fn solutions were found to be almost exclusively dominated by Fn molecules. Further sequential adsorption experiments showed little evidence of HSA adsorbed onto the predeposited Fn layer (denoted as Fn ? HSA), and Fn was not adsorbed onto predeposited HSA (HSA ? Fn). The conformational arrangement of the adsorbed Fn was analyzed in terms of the relative availability of two Fn domains. In particular, (4)F(1)·(5)F(1) binding domains in the Hep I fragment, close to the amino terminal of Fn, were targeted using a polyclonal antifibronectin antibody (anti-Fn), and the RGD sequence in the 10th segment, in the central region of the molecule, was tested by cell culture experiments. The results suggested that coadsorption with HSA induced the Fn switch from an open conformation, with the amino terminal subunit oriented toward the solution, to a close conformation, with the Fn central region oriented toward the solution.  相似文献   

3.
构建大菜粉蝶Lipocalin蛋白家族中的BBP蛋白突变文库, 依据基因序列, 分别设计10条和12条引物, 通过PCR重叠延伸法得到包含随机突变蛋白BBP的基因序列, 并重组到噬菌粒载体pCANTAB5E中构建Lipocalin突变文库, 库容达到4.0×109. 以偶联分子BSA-克百威和OVA-克百威为靶分子, 采用柱式和平皿式交叉法对Lipocalin文库进行了筛选, 用竞争洗脱法洗脱特异结合活性的噬菌体. 经过3轮筛选, 从第3轮的洗脱液中随机挑选了10个重组克隆, 用Dot-blotting法检测出K7 anticalin分子能与克百威特异结合. 为研发克百威的Anticalin类检测试剂盒提供了候选分子, 也为拓宽Lipocalin文库在有害小分子检测方面的应用奠定了基础.  相似文献   

4.
In order to develop an anti-human TNF-alpha mAb, mice were immunized with recombinant human TNF-alpha. A murine mAb, TSK114, which showed the highest binding activity for human TNF-alpha was selected and characterized. TSK114 specifically bound to human TNF-alpha without cross-reactivity with the homologous murine TNF-alpha and human TNF-beta. TSK114 was found to be of IgG1 isotype with kappa light chain. The nucleotide sequences of the variable regions of TSK114 heavy and light chains were determined and analyzed for the usage of gene families for the variable (V), diversity (D), and joining (J) segments. Kinetic analysis of TSK114 binding to human TNF-alpha by surface plasmon resonance technique revealed a binding affinity (K(D)) of approximately 5.3 pM, which is about 1,000- and 100-fold higher than those of clinically relevant infliximab (Remicade) and adalimumab (Humira) mAbs, respectively. TSK114 neutralized human TNF-alpha-mediated cytotoxicity in proportion to the concentration, exhibiting about 4-fold greater efficiency than those of infliximab and adalimumab in WEHI 164 cells used as an in vitro model system. These results suggest that TSK114 has the potential to be developed into a therapeutic TNF-alpha-neutralizing antibody with picomolar affinity.  相似文献   

5.
Adsorbed protein layers are often away from equilibrium and thus exhibit history dependent structures. We use the kinetics of monoclonal antibody binding, as measured using optical waveguide lightmode spectroscopy (OWLS), to investigate the structure of adsorbed fibronectin (Fn) layers formed under different kinetic paths. For all of the layers investigated, we find no difference between the apparent adsorption rate constants of (i) monoclonal antibodies specific to Fn's cell binding site (alpha-Fn) and (ii) monoclonal antibodies specific to cytochrome c (alpha-CC, as a control), indicating initial adsorption of antibodies to be non-specific. For certain layers, the saturation density and the initial projected area per antibody differ significantly between alpha-Fn and alpha-CC, suggesting specific binding to follow the initial non-specific attachment. The fraction of antibodies binding specifically to the Fn layer, and the number of Fn binding sites per specific binding event, are estimated in terms of the difference in initial projected areas between alpha-Fn and alpha-CC. For a Fn layer formed at a bulk concentration of 2 microg/mL, we find a decrease in specific binding with an increase in Fn layer formation time, suggesting post-adsorption structural changes of a lower density adsorbed layer diminish binding site availability. Conversely, for a Fn layer formed at a bulk concentration of 40 microg/mL, we find an increase in specific binding with an increase in the aging time of the Fn layer, implying post-adsorption structural changes reveal binding sites for a higher density adsorbed layer.  相似文献   

6.
Fibronectins (FNs) are a major component of the extracellular matrix (ECM), and provide important binding sites for a variety of ligands outside and on the surface of the cell. Similar to other ECM proteins, FNs are consistently subject to mechanical stress in the ECM. Therefore, it is important to study their structure and binding properties under mechanical stress and understand how their binding and mechanical properties might affect each other. Although certain FN modules have been extensively investigated, no simulation studies have been reported for the FN type I (Fn1) domains, despite their prominent role in binding of various protein modules to FN polymers in the ECM. Using equilibrium and steered molecular dynamics simulations, we have studied mechanical properties of Fn1 modules in the presence or the absence of a specific FN-binding peptide (FnBP). We have also investigated how the binding of the FnBP peptide to Fn1 might be affected by tensile force. Despite the presence of disulfide bonds within individual Fn1 modules that are presumed to prevent their extension, it is found that significant internal structural changes within individual modules are induced by the forces applied in our simulations. These internal structural changes result in significant variations in the accessibility of different residues of the Fn1 modules, which affect their exposure, and, thus, the binding properties of the Fn1 modules. Binding of the FnBP appears to reduce the flexibility of the linker region connecting individual Fn1 modules (exhibited in the form of reduced fluctuation and motion of the linker region), both with regard to bending and stretching motions, and hence stabilizes the inter-domain configuration under force. Under large tensile forces, the FnBP peptide unbinds from Fn1. The results suggest that Fn1 modules in FN polymers do contribute to the overall extension caused by force-induced stretching of the polymer in the ECM, and that binding properties of Fn1 modules can be affected by mechanically induced internal protein conformational changes in spite of the presence of disulfide bonds which were presumed to completely abolish the capacity of Fn1 modules to undergo extension in response to external forces.  相似文献   

7.
8.
We have investigated the efficacy of generating multiple sidechain conformations using a rotamer library in order to find the experimentally observed ligand binding site conformation of a protein in the presence of a bound ligand. We made use of a recently published algorithm that performs an exhaustive conformational search using a rotamer library to enumerate all possible sidechain conformations in a binding site. This approach was applied to a dataset of proteins whose structures were determined by X-ray and NMR methods. All chosen proteins had two or more structures, generally involving different bound ligands. By taking one of these structures as a reference, we were able in most cases to successfully reproduce the experimentally determined conformations of the other structures, as well as to suggest alternative low-energy conformations of the binding site. In those few cases where this procedure failed, we observed that the bound ligand had induced a high-energy conformation of the binding site. These results suggest that for most proteins that exhibit limited backbone motion, ligands tend to bind to low energy conformations of their binding sites. Our results also reveal that it is possible in most cases to use a rotamer search-based approach to predict alternative low-energy protein binding site conformations that can be used by different ligands. This opens the possibility of incorporating alternative binding site conformations to improve the efficacy of docking and structure-based drug design algorithms.  相似文献   

9.
The development and characterization of an artificial protein L (PpL) for the affinity purification of antibodies is described. Ligand 8/7, which emerged as the lead from a de novo designed combinatorial library of ligands, inhibits the interaction of PpL with IgG and Fab by competitive ELISA and shows negligible binding to Fc. The ligand 8/7 adsorbent (Ka approximately 10(4) M(-1)) compared well with PpL in binding to immunoglobulins from different classes and sources and, in addition, bound to IgG1 with K and lambda isotypes (92% and 100% of loaded protein) and polyclonal IgG from sheep, cow, goat and chicken. These properties were also reflected in the efficient isolation of immunoglobulins from crude samples.  相似文献   

10.
We present herein a novel bioseparation/chemical analysis strategy for protein–ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography–mass spectrometry (LC–MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC–MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5 s, and on-line prepare the “clean” sample to be directly compatible with the LC–MS analysis. The improvement in performance of this 2D-TFC/LC–MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC–MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.  相似文献   

11.
Dendritic molecules appended with multiple zinc porphyrin units (DPm, m [number of zinc porphyrin units] = 6, 12, and 24) trap bipyridine compounds carrying multiple fullerene units (Py2Fn, n [number of C60 units] = 1-3), affording coordination complexes DPm superset Py2Fn having a photoactive layer consisting of spatially segregated donor and acceptor arrays on their surface. Complexes DPm superset Py2Fn are stable enough (K [average binding affinity] = 1.1 x 10(6)-4.4 x 10(6) M(-1) in CHCl3 at 25 degrees C) to be isolated by gel permeation chromatography. UHV-STM microscopy enables clear visualization of a petal-like structure of DP12 superset Py2F3. Photoexcitation of the zinc porphyrin units in DPm superset Py2Fn results in a zinc porphyrin-to-fullerene electron transfer to generate a charge separation. The charge-separation rate constant (kCS) in CH2Cl2 at 20 degrees C increases from 0.26 x 10(10) to 2.3 x 10(10) s(-1) upon increment of m and n, whereas the charge-recombination rate constant (kCR) remains almost unchanged at 4.5 x 10(6)-6.7 x 10(6) s(-1). Consequently, DP24 supersetPy2F3 furnishes the largest ratio of kCS/kCR (3400) among the family.  相似文献   

12.
We have studied the dynamics of binding of 19F labelled haptens by mouse plasmacytoma antibody MOPC-315, a protein which shows specificity for nitrophenyl haptens. The off-rates for the dissociation of hapten from MOPC-315 proteins (7S, Fab′ and Fv) were determined by the application of several methods including a technique which, in certain cases, allows the direct determination of the rate of exchange of nuclei between magnetically non-equivalent sites without requiring prior knowledge of intrinsic line widths. Used in conjunction with independently determined data on line widths, chemical shifts, and binding affinities, these studies show that the rates for hapten association to, or dissociation from, the intact 7S antibody, the Fab′ fragment, and the Fv fragment of MOPC-315 are essentially the same. They also indicate the presence, probably in the Fv region, of a low affinity (K~ 103 M?1) site(s) for hapten binding. The mobility of the hapten combining site decreases as the size of the protein increases. These rate data, which were determined at relatively high protein concentrations (up to 40 mg ml?1), agree with on-rates determined at much lower protein concentrations (≤1 mg ml?1); we therefore conclude that protein aggregation, if it does occur, does not significantly affect binding in these systems.  相似文献   

13.
《Analytical letters》2012,45(5):855-873
Abstract

A pair of single chain Fv fragment (scFv) fusion proteins were constructed and characterized. Antibody chips using the pair were designed for sensitive detection of prion protein. Phage displayed antibody library was synthesized by immunizing mice with thioredoxin‐mature bovine prion fusion protein (TrxA‐bPrPc). After five rounds of panning against recombinant bovine prion protein (rb‐PrPc) and ELISA test, two positive clones with high affinity to rb‐PrPc, named Z163 and Z186, were obtained. They were conjugated with a linker‐streptavidin binding protein (SBP) or human IgG1 constant fragment (Fc) to form the scFv fusion protein pair Z186‐L‐SBP/Z163‐Fc. Western blot experiments showed that the scFv fusion pair specifically interacted with the line epitopes of the protease resistant core region bPrP27‐30. Surface plasmon resonance (SPR) sensorgrams revealed that the equilibrium dissociation constants of the interactions with rb‐PrPc were 3.24×10?8 M, 8.82×10?8M, and 8.10×10?9 M for Z186‐L‐SBP, Z163, and Z163‐Fc, respectively. All binding reactions followed rapid association and slow dissociation kinetics. As a detection pair, Z186‐L‐SBP functioned as a capture probe and was immobilized on the streptavidin coated slides to form reactive layer of the antibody chip, and Z163‐Fc labeled with fluorescence dye Cy3 functioned as a detection probe generating fluorescence signal. The antibody chip could detect existence of rb‐PrPc with detection limit of 1 pg/ml.  相似文献   

14.
Isothermal titration calorimetry and X-ray crystallography have been used to determine the structural and thermodynamic consequences associated with constraining the pTyr residue of the pYEEI ligand for the Src Homology 2 domain of the Src kinase (Src SH2 domain). The conformationally constrained peptide mimics that were used are cyclopropane-derived isosteres whereby a cyclopropane ring substitutes to the N-Calpha-Cbeta atoms of the phosphotyrosine. Comparison of the thermodynamic data for the binding of the conformationally constrained peptide mimics relative to their equivalent flexible analogues as well as a native tetrapeptide revealed an entropic advantage of 5-9 cal mol(-1) K(-1) for the binding of the conformationally constrained ligands. However, an unexpected drop in enthalpy for the binding of the conformationally constrained ligands relative to their flexible analogues was also observed. To evaluate whether these differences reflected conformational variations in peptide binding modes, we have determined the crystal structure of a complex of the Src SH2 domain bound to one of the conformationally constrained peptide mimics. Comparison of this new structure with that of the Src SH2 domain bound to a natural 11-mer peptide (Waksman et al. Cell 1993, 72, 779-790) revealed only very small differences. Hence, cyclopropane-derived peptides are excellent mimics of the bound state of their flexible analogues. However, a rigorous analysis of the structures and of the surface areas at the binding interface, and subsequent computational derivation of the energetic binding parameters, failed to predict the observed differences between the binding thermodynamics of the rigidified and flexible ligands, suggesting that the drop in enthalpy observed with the conformationally constrained peptide mimic arises from sources other than changes in buried surface areas, though the exact origin of the differences remains unclear.  相似文献   

15.
Overexpression of the cell-surface glycosphingolipid G(M3) is associated with a number of different cancers, including those of the skin, colon, breast, and lung. Antibodies against the G(M3) epitope have potential application as therapeutic agents in the treatment of these cancers. We describe the chemoenzymatic synthesis of two G(M3)-derived reagents and their use in the panning of a phage-displayed human single-chain Fv (scFv) antibody library derived from the blood of cancer patients. Three scFv-phage clones, GM3A6, GM3A8, and GM3A15, were selected for recombinant expression and were characterized using BIAcore and flow cytometry. BIAcore measurements using the purified, soluble scFvs yielded dissociation constants (K(d)) ranging from 4.2 x 10(-7) to 2.1 x 10(-5) M. Flow cytometry was used to evaluate the ability of each scFv to discriminate between normal human cells (human dermal fibroblast, HDFa), melanoma cells (HMV-1, M21, and C-8161), and breast cancer cells (BCM-1, BCM-2, and BMS). GM3A6 displayed cross-reactivity with normal cells, as well as tumor cells, and GM3A15 possessed little or no binding activity toward any of the cell lines tested. However, GM3A8 bound to five of the six tumor cell lines and showed no measurable reactivity against the HDFa cells. Hence, we have demonstrated that a synthetic G(M3) panning reagent can be used to isolate a fully human scFv that is highly specific for native G(M3) on the surface of tumor cells. The result is a significant step toward effective immunotherapies for the treatment of cancer.  相似文献   

16.
Introduction CardiactroponinI(cTnI),aspecificproteinof cardiacmusclecells,showsa40%dissimilarity withskeletaltroponinI(sTnI)inaminoacidse- quence.Moreover,humancardiacTnIhas31addi- tionalresiduesonitsN-terminalend,whichare notpresentinskeletalforms,thusprovidingahigh potentialforobtainingcardiac-specificantibod- ies[1,2].Themolecularweightofthisproteinis29 kDaandtherefore,itwillbereleasedreasonably rapidlyafteracutemyocardialinfarction(AMI). CTnIoftenappearsinbloodwithinafewhoursaf- ter…  相似文献   

17.
We describe efficient methods for using functional proteomics analysis to study signal transduction pathways in murine fibroblast L929 cells following stimulation with tumor necrosis factor (TNF)-alpha. After stimulation with TNF-alpha, cellular proteins of L929 cells were extracted with a lysis buffer containing 0.3% sodium dodecyl sulfate (SDS) for 10-30 min time intervals, and were separated by two-dimensional (2-D) electrophoresis followed by immunoblot analysis with anti-phosphotyrosine antibody and alkaline phosphatase-anti IgG antibody conjugate. To improve detection sensitivity by immunoblot analysis we used a chemifluorescent substrate for alkaline phosphatase. One hundred protein spots were detected in the TNF-alpha stimulated L929 cell extract by immunoblot analysis. The use of chemifluorescence allowed us to quantitate immunoblotted spots with fluoroscanner so that we were able to detect time-dependent changes of a number of immunoblotted spots. Protein spots on a silver-stained 2-D gel corresponding to those detected by immunoblot analysis were subjected to in-gel trypsin digestion- matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-mass spectrometry analysis, respectively. Twenty-one proteins detected by immunoblot analysis were identified by MS-Fit database search analysis. Among them, the proteins that show time-dependent changes in staining intensity include vimentin, tubulin beta-chain, eukaryotic translation initiation factor 1A, chromatin assembly factor 1 (P48 subunit), probable protein disulfide isomerase P5, and several other proteins. Vimentin and tubulin beta-chain have been reported to be phosphorylated at tyrosine residues and involved in the signal transduction pathway induced by TNF-alpha. However, the other proteins have no previously known function in the signal transduction pathway. Thus, the methods used in this study seem to be suitable for the identification of time-dependent changes in many proteins that are involved in signal transduction. Usefulness of the method for comprehensive analysis of the proteins involved in signal transduction pathway and the limitations of the method are discussed.  相似文献   

18.
Spleen tyrosine kinase (Syk) is essential for high affinity IgE receptor (FcεRI) mediated mast cell degranulation. Once FcεRI is stimulated, intracellular ITAM motifs of the receptor are diphosphorylated (dpITAM) and Syk is recruited to the receptor by binding of the Syk tandem SH2 domain to dpITAM, resulting in activation of Syk and, eventually, degranulation. To investigate intracellular effects of ITAM mimics, constructs were synthesized with ITAM mimics conjugated to different cell penetrating peptides, i.e. Tat, TP10, octa-Arg and K(Myr)KKK, or a lipophilic C(12)-chain. In most constructs the cargo and carrier were linked to each other through a disulfide bridge, which is convenient for combining different cargos with different carriers and has the advantage that the cargo and the carrier may be separated by reduction of the disulfide once it is intracellular. The ability of these ITAM constructs to label RBL-2H3 cells was assessed using flow cytometry. Fluorescence microscopy showed that the octa-Arg-SS-Flu-ITAM construct was present in various parts of the cells, although it was not homogeneously distributed. In addition, cell penetrating constructs without fluorescent labels were synthesized to examine degranulation in RBL-2H3 cells. Octa-Arg-SS-ITAM stimulated the mediator release up to 140%, indicating that ITAM mimics may have the ability to activate non-receptor bound Syk.  相似文献   

19.
Absolute 18-crown-6 (18C6) affinities of nine protonated peptidomimetic bases are determined using guided ion beam tandem mass spectrometry techniques. The bases (B) included in this work are mimics for the n-terminal amino group and the side chains of the basic amino acids, i.e., the favorable sites for binding of 18C6 to peptides and proteins. Isopropylamine is chosen as a mimic for the n-terminal amino group, imidazole and 4-methylimidazole are chosen as mimics for the side chain of histidine (His), 1-methylguanidine is chosen as a mimic for the side chain of arginine (Arg), and several primary amines including methylamine, ethylamine, n-propylamine, n-butylamine, and 1,5-diamino pentane as mimics for the side chain of lysine (Lys). Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the peptidomimetic bases, as well as the proton bound complexes comprised of these species, (B)H(+)(18C6). The measured 18C6 binding affinities of the Lys side chain mimics are larger than the measured binding affinities of the mimics for Arg and His. These results suggest that the Lys side chains should be the preferred binding sites for 18C6 complexation to peptides and proteins. Present results also suggest that competition between Arg or His and Lys for 18C6 is not significant. The mimic for the n-terminal amino group exhibits a measured binding affinity for 18C6 that is similar to or greater than that of the Lys side chain mimics. However, theory suggests that binding to n-terminal amino group mimic is weaker than that to all of the Lys mimics. These results suggest that the n-terminal amino group may compete with the Lys side chains for 18C6 complexation.  相似文献   

20.
Histone methylation has emerged as a central epigenetic modification with both activating and repressive roles in eukaryotic chromatin. Drosophila HP1 (heterochromatin‐associated protein 1) is one of the chromodomain proteins that contain the essential aromatic residues as the recognition pocket for lysine methylated histone H3 tail. The aromatic cage indicates that the complex of chromodomain protein binding lysine methylated histone H3 tail can be seen as a typical host–guest system between protein and protein. About 10‐ns molecular dynamics simulations have been carried out in this study to examine how the presence of mono‐, trimethylated lysine 9 histone H3 tail (Me1K9, Me3K9 H3) influences the motions of HP1 protein receptor. The study shows that the conformation of HP1 protein free of H3 tail easily changes, whereas that of HP1 protein bound to methylated H3 tail does not. But the conformation of inserted Me1K9 H3 changes obviously as the Me1K recognition makes hydrogen‐bonded interactions associated with the aromatic cage even more unstable than those in free HP1 protein. The conformational change of Me1K9 H3 is correlated with the motions of HP1 protein. As the recognition factor going from Me1K to Me3K produces a more favorable interaction for aromatic ring, hydrogen‐bonded interactions associated with aromatic cage in Me3K9 H3‐HP1 complex were observed to be much more stable than those in Me1K9 H3‐HP1 complex and free HP1. Because of correlation, the flexibility of Me3K9 H3 decreases. The simulations indicate that both the MeK and the surrounding histone tail sequence are necessary features of recognition which significantly affect the flexibility and backbone motions of HP1 chromodomain. These findings confirm a regulatory mechanism of protein–protein interactions through a trimethylated post‐translational modification. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号