首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了AccQ· Tag柱前衍生-高效液相色谱法测定荔枝果蒂中氨基酸含量的方法.荔枝果蒂样品在120℃下真空水解22 h,再与AQC衍生剂进行衍生,并采用反相液相色谱法-荧光检测器进行分析,外标法计算样品中17种氨基酸的含量.17种氨基酸在35 min内可完全分离,荔枝果蒂中氨基酸的含量在2.5~25 μmol/L范围内与色谱峰面积呈良好的线性关系,相关系数不小于0.999.方法的加标回收率在71.2%~92.0%之间,测定结果的相对标准偏差为3.16%~9.94%(n=6),方法的检出限(S/N=3)在0.000 5~0.0012 mg/L之间.  相似文献   

2.
陈丽梅  尚艳芬  赵孟彬  刘虎威 《色谱》2010,28(12):1154-1157
建立了一种6-氨基喹啉基-N-羟基琥珀酰亚氨基甲酸酯(AQC)柱前衍生,超高效液相色谱(UPLC)对酱油中18种氨基酸进行快速分离检测的方法。采用BEH C18色谱柱分离,在260 nm波长下检测,以乙酸铵-乙酸-乙腈-水和乙腈-乙酸为流动相,将流动相梯度和流速梯度相结合,在12 min内实现了18种氨基酸衍生物的分离。方法的线性回归系数(r2)均大于0.999,检出限为0.032~0.12 mg/L,日间相对标准偏差(RSD)为0.72%~4.05%,在酱油中18种氨基酸的加标回收率为90.2%~103.7%。该方法前处理过程简单,分离时间短,是检测酱油中氨基酸的有效手段,可用于酱油的质量评定。  相似文献   

3.
The analysis of nineteen amino acids found in collagen was optimised using 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate (AQC) as a derivatisation reagent. The analysis and detection of nineteen AQC-amino acids using fluorescence and mass spectrometry were compared at different mobile phase pH’s and column temperatures. The pH range of the mobile phase was set between 2.7 and 6.0 and column temperatures, 15–60 °C. The majority of amino acids produced a mono-derivatised product with AQC, except cystine, lysine and hydroxylysine which were di-derivatised. Hydroxylysine’s retention time was affected most by changes in the pH, whilst hydroxyproline’s retention time was more affected by column temperature. Hydroxylysine was detected as two diastereomers which were completely resolved. The relative standard deviation of the retention times of AQC-amino acids was less than 1% and the limit of detection (LOD) and limit of quantitation (LOQ) were ranged from (0.05–0.23) µM and (0.07–0.76) µM on fluorescence and (0.02–0.10) µM and (0.06–0.33) µM on mass spectrometry respectively. This method was successfully applied for the quantitation of amino acids in different animal skins.  相似文献   

4.
We have developed a method for the determination of histamine (His), tyramine (Tyr) and cadaverine (Cad) using high-performance capillary electrophoresis with fluorescence detection and an on-line mode in-capillary derivatization with o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) as derivatization reagent. HPCE separation of His, Tyr, Cad and Spermidine (Spd) was influenced by sodium dodecyl sulfate (SDS) and phosphate–borate buffer (pH 10) concentration. After optimization of the method, a 4-component amine solution containing His, Tyr, Cad and Spd could be separated and detected by using 2 mM OPA/NAC–20 mM SDS–20 mM phosphate–borate buffer (pH 10) as a run buffer at an applied voltage of 25 kV, with detection at 340 nm. Although a practical sensitivity level can be obtained by using fluorescence detection (λex=340 nm, λem=450 nm) instead of ultraviolet–visible detection, Spd was not detected at all. The precision (relative standard deviation; n=15) of this method for within- and between-days is less than 2.9% (peak area) and 1.3% (migration time), respectively. Linearity for these analytes, except for Spd, was established over a concentration range of 0.02 to 1.00 μmol/ml and detection limits (S/N=3) range from 1 nmol/ml for His and Tyr to 5 nmol/ml for Cad. The determination of His and some amines in aging raw fish meat samples (room temperature, 48 h) was carried out using the described method with fluorescence detection.  相似文献   

5.
Gu W  Zhang J  Xin M  Yao Y  Ji R  Lü B  Chen J 《色谱》2011,29(10):1041-1045
建立了反相高效液相色谱(RP-HPLC)分离检测用不同方法煮制的猪肉及其汤汁中17种游离氨基酸的方法.样品经6-氨基喹啉基-N-羟基琥珀酰亚氨基甲酸酯(AQC)柱前衍生后,采用Nova- PakTMC18色谱柱分离,以AccQ·Tag Eluent A稀释液、乙腈和超纯水为流动相,梯度洗脱,检测波长为248 nm,在4...  相似文献   

6.
A method was developed for quantifying 17 amino acids in tobacco leaves by using an A300 amino acid analyzer and chemometric resolution. In the method, amino acids were eluted by the buffer solution on an ion‐exchange column. After reacting with ninhydrin, the derivatives of amino acids were detected by ultraviolet detection. Most amino acids are separated by the elution program. However, five peaks of the derivatives are still overlapping. A non‐negative immune algorithm was employed to extract the profiles of the derivatives from the overlapping signals, and then peak areas were adopted for quantitative analysis of the amino acids. The method was validated by the determination of amino acids in tobacco leaves. The relative standard deviations (n = 5) are all less than 2.54% and the recoveries of the spiked samples are in a range of 94.62–108.21%. The feasibility of the method was proved by analyzing the 17 amino acids in 30 tobacco leaf samples.  相似文献   

7.
In the present study, the changeover from the Pico.Tag HPLC method to the AccQ.Tag(ultra) UPLC method for the analysis of amino acids in casein and bovine serum albumine hydrolysates is described. The total chromatographic run time of the AccQ.Tag(ultra) UPLC method was only 40% of the time required for the Pico.Tag HPLC method. Quantitative results of both methods for casein and bovine serum albumine hydrolysates compared fairly well. The derivatisation protocol for the formation of AQC derivatives of amino acids was automated using a Gilson Model 215 liquid handler. Comparison of the manual derivatisation protocol with the automated protocol showed lower coefficients of variation for the latter. Combination of the AccQ.Tag(ultra) UPLC method and automated derivatisation resulted in improved throughput compared to the Pico.Tag HPLC method.  相似文献   

8.
Commercial glucooligosaccharide mixtures (Polycose) and polysaccharide hydrolysates (acid and enzymatic) were fractionated by hydrophilic interaction chromatography and observed by pulsed amperometric detection. Seven peaks were observed when 625 ng of glucose oligomers in Polycose were fractionated. The between-run precision of retention times (n = 10, 100 μg, 15 peaks) ranged from a relative standard deviation (R.S.D.) of 0.09 to 0.40%; between-run precision of peak areas (n = 10) for the same separations had values that ranged from 2.66 to 14.4%. Injection-to-injection time was 48 min. When polysaccharide hydrolysates were fractionated using a gradient program capable of resolving all of the oligosaccharide species, dextran-derived -(1→6)- glucooligosaccharides were retained to a greater degree than amylose-derived -(1→4)-glucooligosaccharides, which were retained to a greater degree than β-(2→1)-fructooligosaccharides derived from inulin. Excluding the peaks that eluted before glucose or fructose, 25 to 35 peaks were observed after fractionation of the hydrolysates. Differences in elution profiles were observed between acid and enzymatic hydrolysis products of the same polysaccharide as well as between hydrolysis products of different polysaccharides. In conjunction with high-performance size-exclusion chromatography, the method demonstrated the effect of preheating starch before hydrolysis with isoamylase.  相似文献   

9.
建立了一种用于测定中药制剂中氨基酸成分的毛细管电泳-荧光检测方法. 用含有α-环糊精(α-CD)的硼砂缓冲溶液为背景电解质, 经异硫氰酸荧光素(FITC)衍生的5种氨基酸在50 min内可以得到很好的分离和测定. 考查了各个分离参数对分离的影响, 得到的优化条件为: 含45 mmol/L的α-环糊精的80 mmol/L硼砂缓冲溶液(pH值9.2)作为背景电解质, 分离电压20 kV; 柱温22 ℃. 衍生试剂FITC与单个氨基酸的化学计量比为4∶1时, 能够获得稳定荧光强度的氨基酸衍生物. 在优化条件下, 各氨基酸成分在73.5~2900 nmol/L 的浓度范围内呈良好的线性关系(相关系数r2为0.9906~0.9998). 保留时间和峰面积的相对标准偏差分别为0.8%~3.0%和0.7%~5.7%, 检测限(3倍信噪比)为3.5~35 nmol/L. 该方法准确可靠, 可用于质量控制为目的的中药制剂中氨基酸成分的定量测定.  相似文献   

10.
A derivatization system coupled to capillary electrophoresis for the determination of amino acids using 1,2-naphthoquinone-4-sulfonate as a labeling agent is described. In this system, amino acids are derivatized on-line in a three-channel flow manifold for sample, reagent and buffer solutions. The reaction takes place in a PTFE coil heated at 80 degrees C. The resulting solution, which contains the amino acid derivatives, is introduced into the electrophoretic system by means of an appropriate interface. Subsequently, amino acid derivatives are separated at 25 kV using a 40 mM sodium tetraborate aqueous solution with 30% (v/v) isopropanol solution as a running buffer. The electropherograms are monitored spectrophotometrically at 230 nm. The method has been applied to the determination of amino acids in feed samples and pharmaceutical preparations. A good concordance of the predicted values with those given by a standard amino acid analyzer is shown.  相似文献   

11.
A pre-column derivatization method for the sensitive determination of amino acids using the tagging reagent 2-[2-(dibenzocarbazole)-ethoxy] ethyl chloroformate (DBCEC) followed by liquid chromatography with fluorescence detection has been developed. Identification of DBCEC-amino acids derivatives was by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS–MS). DBCEC can easily and quickly label amino acids, and derivatives are stable enough to be efficiently analyzed by LC. Separation of the derivatized amino acids had been optimized on Hypersil BDS C18 column. A perfect baseline separation for 20 amino acid derivatives was achieved with a ternary gradient elution program. The chromophore of dibenzocarbazole group, which comprise a large rigid planar structure with p–π conjugation system, resulted in a sensitive fluorescence detection for amino acid derivatives. The derivatized amino acids were detected with fluorescence detector with excitation maximum and emission maximum at 300 and 390 nm, respectively. Excellent linear responses were observed with coefficients of >0.9993, and detection limits were in the range of 0.78–5.13 fmol (signal-to-noise ratio of 3). The mean accuracy ranged from 83.4 to 98.7% for fluorescence detection. The mean inter-day precision for all standards was <4.2% of the expected concentration. Therefore, the proposed method was a highly sensitive and specific method for the quantitative analysis of amino acids from biological and natural environmental samples.  相似文献   

12.
Escriche JM  Estelles ML  Reig FB 《Talanta》1983,30(12):915-918
The Cd-PAN system in the presence of non-ionic surfactants (polyoxyethylene nonylphenols), which dissolve the reagent and complex by formation of micelles, has been studied spectrophotometrically. The optimum conditions for Cd determination are pH 9 (Na2B4O7-HClO4), 2% of surfactant and measurement at 555 nm. The complex is Cd(PAN)2 and its conditional formation constant is 3.5 × 1011. The system obeys the Lambert-Beer law, with an error of 0.9% over the Cd concentration range 0.44–1.74 ppm; the molar absorptivity is 4.94 × 1041·mole−1.cm−1 at 555 nm. The relative standard deviation is 0.7% and the limit of detection 0.009 μg/ml. The selectivity with respect to species important in the ceramic industry is adequate for application of the method to determination of Cd in acetic acid extracts of ceramic enamels.  相似文献   

13.
You J  Ming Y  Shi Y  Zhao X  Suo Y  Wang H  Li Y  Sun J 《Talanta》2005,68(2):448-458
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)+ under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of CO bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted derivatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono-1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)2. In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios ACBCEOC/ACCEOC = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was <10% of the expected concentration. Excellent linear responses were observed with coefficients of >0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples.  相似文献   

14.
A sequential injection analysis (SIA) spectrophotometric method for the determination of trace amounts of zinc(II) with 1-(2-pyridylazo)-2-naphthol (PAN) is described. The method is based on the measurement of absorbance of the zinc(II)–PAN chelate solubilized with a non-ionic surfactant, Triton X-100, no extraction procedure is required in the proposed method, yielding a pink colored complex at pH 9.5 with absorption maximum at 553 nm. The SIA parameters that affect the signal response have been optimized in order to get the better sensitivity and minimum reagent consumption. A linear relationship between the relative peak height and concentration was obtained in the concentration range of 0.1–1.0 μg ml−1. The limit of detection (LOD, defined as 3σ) and limit of quantification (LOQ, defined as 10σ) were 0.02 and 0.06 μg ml−1, respectively. The sample throughput about 40 samples/h was obtained. The repeatability were 1.32 and 1.24% (n = 10) for 0.1 and 0.5 μg ml−1, respectively. The proposed method was successfully applied to the assay of zinc(II) in three samples of multivitamin tablets. The results were found to be in good agreement with those obtained by flame atomic absorption spectrophotometric method and with the claimed values by the manufactures. The t-test showed no significant difference at 95% confidence level.  相似文献   

15.
A high-performance liquid chromatographic model for the simultaneous determination of altersolanol A–F by using a reversed-phase column with an acetonitrile-water gradient elution system is described. The analysis can be completed within 13 min, the detection limits are 0.2–0.5 pmol per injection (5 μl) and the relative standard deviations are 0.90–1.34%. The method was applied satisfactorily to the determination of altersolanols in culture media of a strain of Alternaria solani without any prepurification.  相似文献   

16.
A new method was developed for the quantitative determination of the neurotoxic non-protein amino acid, 3-N-oxalyl-L-2,3-diaminopropionic acid (b -ODAP), its nontoxic a -isomer and other non-protein amino acids in the plant samples of Lathyrus sativus after derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) by reversed-phase high-performance liquid chromatography (HPLC). 2-Amino butyric acid (ABA) was used as an internal standard. The RP HPLC detection limit for both isomers is 1.8 ng with good response linearity. The results are compared with a colorimetric method.  相似文献   

17.
Summary A method for the determination of low relative molecular mass carboxylic acids (C1–C4) in water is reported. The acids are converted to p-bromophenacyl esters prior to a glass-capillary gas chromatographic separation. By utilizing electron-caputre detection the detectability is substantially improved compared to flame-ionization detection. A comparison of three different ways to treat the water samples and to produce the derivatives is made. It is shown that the , p-dibromoacetophenone reagent decomposes to a small extent which limits the utility of the reagent. Nevertheless a detection limit for formic acid of approximately 2.5 mgl–1 is obtained. The method is applied to the determination of formic and acetic acids in a paper kraft water sample.  相似文献   

18.
This study describes an application of on-line preconcentration by large-volume stacking in combination with in-capillary derivatization for enhancing spectrophotometric detection sensitivity in capillary electrophoresis. The method is illustrated by an example dealing with the determination of amino acids with 1,2-naphthoquinone-4-sulfonate as a labelling agent. Samples are dissolved in water in order to create a stacking process based on differences in the conductivity between this medium and a concentrated running buffer. The in-capillary derivatization is accomplished following a sandwich procedure in which the sample is inserted between two segments of reagent. Amino acid derivatives are obtained and separated in a fused-silica capillary with a sodium borate electrolyte buffer using 2-propanol as an organic modifier. The method is applied to the analysis of amino acids in pharmaceutical and feed samples. A good concordance between the predicted values and those obtained with the standard method is observed, with overall quantification error below 5%. The proposed procedure allows the detection limits sensitivity to be enhanced in 1000-fold with respect to conventional precapillary derivatization.  相似文献   

19.
We present a new method for homocysteine quantitation in human plasma based on in-capillary reaction of homocysteine with 2,2′-dipyridyl disulfide. Homocysteine is in this so-called thiol-exchange reaction quantitatively transformed in mixed disulfide concomitantly with formation of an equimolar amount of 2-thiopyridone that is further separated by micellar electrokinetic chromatography and determined specifically at 343 nm. The concentration of homocysteine is thus estimated indirectly from the result of 2-thiopyridone determination. The linear detection range for concentration versus peak area for the assay was from 0.03–3 mM (correlation coefficient 0.994) with a detection limit of 6 μM and a limit of quantitation 20 μM. The inter-day reproducibility of the peak area and the migration time were 1.37% and 0.05%, respectively. The method is simple, relatively rapid and can be easily automated. Moreover the common capillary electrophoresis apparatus with a UV detector can be used to distinguish between normal and pathological hyperhomocysteinemia plasma samples.  相似文献   

20.
Guan CL  Ouyang J  Li QL  Liu BH  Baeyens WR 《Talanta》2000,50(6):1197-1203
A simple method for simultaneous determination of three catecholamines using ion chromatography (IC) with direct conductivity detection (CD) based on the ionization of catecholamines in acidic medium without chemical suppression is developed in the present paper. The method could be used for the determination of these catecholamines in pharmaceutical preparations for the purpose of drug quality control. The recovery of catecholamines was more than 97% (n=3) and the relative standard deviation (R.S.D.) (n=11) was less than 2.1%. In a single chromatographic run, norepinephrine (NE), epinephrine (E) and dopamine (DA) can be determined in less than 10 min. The detection limits were found to be 0.001 μg/ml for NE, 0.01 μg/ml for E and DA respectively. Linear ranges were 0.01–50 μg/ml for NE (r2=0.9998), 0.1–50 μg/ml for E (r2=0.9995) and DA (r2=0.9999), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号