首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pentafulvenes are regioselectively cyclopropanated with group 6 Fischer carbene complexes leading to the homofulvene ring with complete endo selectivity. The homofulvene adducts undergo in turn a further cyclopropanation with ethyl diazoacetate or cyclopentannulation with a Fischer alkenyl carbene complex to provide substituted cyclopentanones after ozonolysis of the exocyclic carbon=carbon double bond. Fischer alkynyl carbene complexes also produce the corresponding alkynyl homofulvenes, albeit the exo stereoisomer is in this case exclusively or preferentially formed. Under moderate CO pressure, tungsten alkynyl carbene complexes cycloadd to pentafulvenes in a [4 + 3] fashion, giving rise to bicyclo[3.2.1]octadien-2-ones.  相似文献   

2.
The formal [8 + 2] cycloaddition reaction between alkynyl Fischer carbene complexes and tropothione leads to the regioselective formation of novel 3aH-cyclohepta[b]thiophene carbene complexes. Computational DFT calculations indicate that the process proceeds stepwise via antiaromatic zwitterionic intermediates.  相似文献   

3.
The ruthenium-catalyzed isomerization of diynes and triynes involving propargyl carboxylate moieties affords dienynes and dienediynes, respectively. The [1,n]-metallotropic shift (n = 3, 5) (carbene walk) of in situ generated alkynyl carbene complexes has been proposed for the catalytic isomerization reaction.  相似文献   

4.
Metal complexes of alkynyl carbenes undergo a [1,3]-bond shift known as a metallotropic shift. Since the discovery of the metallotropic [1,3]-shift of Rh-carbenoid, many more alkynyl carbene complexes with Ti, Cr, Mn, Mo, Ru, W, Re, Pt, and Au have been discovered to show metallotropic shift behavior. This article briefly summarizes the [1,3]-bond shift of alkynyl carbenes and their metal complexes.  相似文献   

5.
The reaction of alkynes with [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Me, Ph, Cy) affords, depending on the structure of the alkyne and the substituent of the phosphine ligand, allyl carbene or butadienyl carbene complexes. These reactions involve the migration of the phosphine ligand or a facile 1,2 hydrogen shift. Both reactions proceed via a metallacyclopentatriene complex. If no alpha C[bond]H bonds are accessible, allyl carbenes are formed, while in the presence of alpha C[bond]H bonds butadienyl carbenes are typically obtained. With diphenylacetylene, on the other hand, a cyclobutadiene complex is formed. A different reaction pathway is encountered with HC[triple bond]CSiMe(3), ethynylferrocene (HC[triple bond]CFc), and ethynylruthenocene (HC[triple bond]CRc). Whereas the reaction of [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Ph and Cy) with HC[triple bond]CSiMe(3) affords a vinylidene complex, with HC[triple bond]CFc and HC[triple bond]CRc this reaction does not stop at the vinylidene stage but subsequent cycloaddition yields allenyl carbene complexes. This latter C[bond]C bond formation is effected by strong electronic coupling of the metallocene moiety with the conjugated allenyl carbene unit, which facilitates transient vinylidene formation with subsequent alkyne insertion into the Ru[double bond]C bond. The vinylidene intermediate appears only in the presence of bulky substituents of the phosphine coligand. For the small R=Me, head-to-tail coupling between two alkyne molecules involving phosphine migration is preferred, giving the more usual allyl carbene complexes. X-ray structures of representative complexes are presented. A reasonable mechanism for the formation of both allyl and allenyl carbenes has been established by means of DFT calculations. During the formation of allyl and allenyl carbenes, metallacyclopentatriene and vinylidene complexes, respectively, are crucial intermediates.  相似文献   

6.
beta-Substituted alkenylcarbene complexes react with methyl ketone lithium enolates to give different carbocyclization products depending on the structure of the lithium enolate, on the metal of the carbene complex, and on the reaction media. Thus, the reactions of aryl and alkyl methyl ketone lithium enolates with beta-substituted alkenyl chromium and tungsten carbene complexes in diethyl ether afford 1,3-cyclopentanediol derivatives derived from a formal [2+2+1] carbocyclization reaction. However, the lithium enolates of acetone and tungsten complexes furnish formal [3+2+2] carbocyclization products. In the case of alkynyl methyl ketone lithium enolates, competitive formal [2+2+1] and [3+2] carbocyclization reactions occur and 1,3-cyclopentanediol and 3-cyclopentenol derivatives are formed. Conversely, alkenyl methyl ketone lithium enolates react with alkenylcarbene complexes under the same reaction conditions to form 2-cycloheptenone derivatives by a formal [4+3] carbocyclization reaction. Finally, when the reaction was performed in the presence of a coordinating medium, the [3+2] carbocyclization pattern was observed independently of the nature of the methyl ketone lithium enolate used.  相似文献   

7.
Cho EJ  Kim M  Lee D 《Organic letters》2006,8(23):5413-5416
[Structure: see text] 1,3-diyne is an excellent source of alkynyl metal carbene species upon activation with an electrophilic metal catalyst. The products from this bond reorganization process suggest that the metal carbene species, generated from the preferential participation of an acetate over an alkene in the first step, undergo an efficient metallotropic [1,3]-shift followed by termination via cyclopropanation.  相似文献   

8.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

9.
We have demonstrated that the combined use of enyne metathesis and metallotropic [1,3]-shift of the corresponding alkynyl ruthenium carbenes is a powerful synthetic tool to construct oligoenynes. In this reaction, alkynyl carbene intermediates formed from an initial ring-closing metathesis reaction (RCM) undergo repetitive [1,3]-shifts and RCMs to give the final products. Linear poly-1,3-diynes containing repeating functionality of the type -[XCH2CCCCCH2]n- generated long-chain conjugated oligoenynes up to n = 5.  相似文献   

10.
Reaction of alpha,beta-unsaturated methoxycarbene complexes 1 and 11 with methyl ketone lithium enolates 2 leads to the corresponding five-membered carbocyclic compounds 4 or diast-4 and 12. The influence of the solvent and/or cosolvent (PMDTA), which turned out to be crucial to direct the reaction to 4 or diast-4, is studied, and a tentative mechanism according to these facts is proposed. In addition, the reaction of carbene complex 1a with alkynyl methyl ketone lithium enolates can be directed to the formal [3 + 2] or [4 + 1] cyclization products by a slight variation of the reaction conditions. Finally, consecutive three-component coupling reactions with carbene complex 1a, lithium enolates 2, and aldehydes 18 to give, in a diastereoselective way, hydroxy carbonyl compounds 19 and tricyclic polyethers 20 are presented.  相似文献   

11.
The first catalytic application of the Group VI metal borylene complexes [(CO)(5)M[double bond]BN(SiMe(3))(2)] involves the demercuration reaction of bis(alkynyl)mercurials, [Hg(C[triple bond]CR)(2)], with formation of a series of buta-1,3-diynes.  相似文献   

12.
The easy cycloaddition of ureas with alkynyl alkoxy biscarbene complexes afforded, in fairly good yields, new biscarbene uracil analogs. X-ray structural data is reported for the dimethyluracil biscarbene complex. By changing the reaction conditions, a new non symmetric complex was obtained whose reaction with ethylenediamine afforded a new tetrakis amino carbene complex.  相似文献   

13.
Simple molybdenum methyl, carbene, and carbyne complexes, [CH3--MoF], [CH2=MoHF], and [CH[triple chemical bond]MoH(2)F], were formed by the reaction of laser-ablated molybdenum atoms with methyl fluoride and isolated in an argon matrix. These molecules provide a persistent photoreversible system through alpha-hydrogen migration between the carbon and metal atoms: The methyl and carbene complexes are produced by applying UV irradiation (240-380 nm) while the carbyne complex is depleted, and the process reverses on irradiation with visible light (lambda>420 nm). An absorption at 589.3 cm(-1) is attributed to the Mo--F stretching mode of [CH3--MoF], which is in fact the most stable of the plausible products. Density functional theory calculations show that one of the alpha-hydrogen atoms of the carbene complex is considerably bent toward the metal atom (angle-spherical HCMo=84.5 degrees ), which provides evidence of a strong agostic interaction in the triplet ground state. The calculated C[triple chemical bond]Mo bond length in the carbyne is in the range of triple-bond values in methylidyne complexes.  相似文献   

14.
The reactivity of alkynyl and enynyl Fischer carbene complexes towards 8‐azaheptafulvenes is examined. Alkynyl carbenes 1 a – f undergo regioselective [8+2] heterocyclization with 8‐aryl‐8‐azaheptafulvenes 2 a , b providing cycloheptapyrroles 3 and 4 with metal carbene or ester functionality at C3. Moreover, consecutive cyclization reactions are involved when enynyl carbenes are used. Thus, the cyclopenta[b]pyrrole framework 7 is formed by the consecutive [8+2] cyclization and cyclopentannulation reactions. The initially formed cyclopentannulation adduct can be intercepted through a Diels–Alder reaction with classic dienophiles to afford increasing structural complexity (compounds 8 and 9 ). More importantly, the construction of the indole skeleton is accomplished with a high degree of substitution and functionalization (compounds 11 – 15 ) by a one‐pot sequence that involves [8+2] cyclization, R? NC or CO insertion, and ring closure.  相似文献   

15.
Up to four different outcomes have been found for the reaction between 1‐oxy‐ortho‐quinodimethanes (oQDMs) and alkoxy alkynyl Fischer carbene complexes (FCCs). The product formed depends on the structure of both reagents and on the reaction solvent. The pathways can be topologically classified as a [4C+2C], a [3(2C+O)+3C], and two different [4C+3C] processes and, in all these sequences, 1‐oxy‐oQDMs behave as enolates or as vinylogous enolates. The reaction of Choy and Yang’s unsubstituted oQDM 1 with tungsten alkynyl FCCs is solvent controlled; thus, selective formation of benzocycloheptenones can be achieved in THF, whereas exclusive synthesis of benzocycloheptene ketals is reached in diethyl ether. On the other hand, THF is the solvent of choice to form benzocycloheptene ketals when an alkyl or aryl group is placed at position 1 of the oQDM in its reaction with tungsten carbene complexes; however, a pyranylidene carbene complex is formed when a chromium carbene complex is used. Alternatively, the presence of bulky alkoxy groups in the FCC component favours a Diels–Alder aromatisation sequence, which leads to 1‐naphthyl FCCs. Furthermore, the isolation and the characterisation of several deuterated compounds by labelling experiments have provided some insight into the reaction pathways, and mechanisms consistent with those findings have been established and several reaction intermediates have been identified.  相似文献   

16.
The reaction of alkynyl Fischer carbenes and isobenzofurans gives rise to the corresponding [4 + 2] cycloadducts. The newly formed carbene adducts are suitable for benzannulation processes in the presence of tert-butylisocyanide or carbon monoxide to yield a variety of new highly substituted polycyclic structures having the anthraquinone framework. The whole two-step process is conducted in a one-pot fashion from easily available 1,4-dihydro-1,4-epoxynaphthalenes.  相似文献   

17.
The B3LYP density functional studies on the dirhodium tetracarboxylate-catalyzed C-H bond activation/C-C bond formation reaction of a diazo compound with an alkane revealed the energetics and the geometry of important intermediates and transition states in the catalytic cycle. The reaction is initiated by complexation between the rhodium catalyst and the diazo compound. Driven by the back-donation from the Rh 4d(xz) orbital to the C[bond]N sigma*-orbital, nitrogen extrusion takes place to afford a rhodium[bond]carbene complex. The carbene carbon of the complex is strongly electrophilic because of its vacant 2p orbital. The C[bond]H activation/C[bond]C formation proceeds in a single step through a three-centered hydride transfer-like transition state with a small activation energy. Only one of the two rhodium atoms works as a carbene binding site throughout the reaction, and the other rhodium atom assists the C[bond]H insertion reaction. The second Rh atom acts as a mobile ligand for the first one to enhance the electrophilicity of the carbene moiety and to facilitate the cleavage of the rhodium[bond]carbon bond. The calculations reproduce experimental data including the activation enthalpy of the nitrogen extrusion, the kinetic isotope effect of the C[bond]H insertion, and the reactivity order of the C[bond]H bond.  相似文献   

18.
Chromium alkoxy alkynyl Fischer carbene complexes react with symmetrical internal alkynes to form new and different organometallic species, which result from consecutive insertions of several alkyne units and carbonyl groups into the metal-carbon bond. The insertion sequence can be controlled and, by slight modification of the reaction conditions, it can be directed to the preparation of either seven- or five-component adducts. Three molecules of alkyne, two carbonyl groups, the carbene ligand and the chromium metal moiety partake in the creation of seven new carbon-carbon bonds and two five-membered carbocycles in the first case while four new carbon-carbon bonds, a sigma Cr--C(sp(2)) bond and a cyclopentadienyl moiety are built in the second case. Evidence that five-component chromium complexes are intermediates in the formation of seven-component adducts is provided; they are also able to insert a unit of a different internal alkyne which confers more diversity to the seven-component adducts. The presence of the sigma Cr--C(sp(2)) bond has also been exploited to develop the synthesis of both cyclopentene-fused and novel spiro-cyclopentenones as well as symmetrical biscyclopentenones. Finally, the isolation of six-component adducts, when tolane was employed as the initial alkyne, provides further support to the proposed mechanism.  相似文献   

19.
Koo B  McDonald FE 《Organic letters》2007,9(9):1737-1740
[reaction: see text] The tungsten-catalyzed cycloisomerization of alkynyl alcohols can be conducted without using photochemistry, using a stable tungsten Fischer carbene as the precatalyst for this transformation. A variety of alkynyl alcohols undergo cycloisomerization under these conditions to provide endocyclic enol ethers of five-, six-, and seven-membered ring sizes. The utility of this method is further demonstrated in the stereoselective synthesis of the disaccharide substructure of altromycin B.  相似文献   

20.
This survey is intended to be a comprehensive summary of articles that report on the synthesis, reactivity, or properties of compounds featuring a multiple bond between carbon and a transition metal. Reactions which employ metal carbene complexes as transient intermediates generated through well-established routes [Russ. Chem. Bull. 48 (1999) 16] are not covered unless there is some effort to characterize the carbene complex intermediate. Although a determined effort has been made to include patents, in general only patents which are listed in or at the end of Organometallics section of Chemical Abstracts (Section 29) are included; patents which appeared in Chemical Abstracts in the year 1999 have been included. Only compounds which feature a multiple bond between one carbon atom and one transition metal are discussed in this survey, thus bridging carbene and carbyne complexes are not covered unless there is a multiple bond to at least one transition metal. The complexes of stable carbenes with transition metals have not been included; since the π-donation component of these complexes is minimal, there is no formal carbonmetal multiple bond [J. Chem. Soc., Chem. Commun. (1997) 1963; Polyhedron 16 (1997) 3879]. This survey has been divided into two sections, metal carbene (or alkylidene) complexes and metal carbyne (or alkylidyne) complexes; the carbene complex section represents the vast majority of this article. The metal carbene section has been organized according to metal, starting from the left side of the periodic table. The ionic model [R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, second ed., Wiley-Interscience, New York, 1994, pp. 25–31] has been employed for the discussion of oxidation states and ligand electron count throughout this survey. A special section focusing on alkene metathesis has been included prior to the discussion of carbene complexes of individual metals. The metal carbyne section has been organized according to reaction type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号