首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Olivella MA 《Talanta》2006,69(1):267-275
An innovative analytical procedure for the analysis of polycyclic aromatic hydrocarbons (PAHs) from large-volume water samples is presented. It involves sample preparation, sampling and the elution process in an automated continuous procedure involving the ASE technique. Prior to sampling, a XAD-2 resin column is prepared on the basis of a commercial accelerated solvent extraction (ASE) cartridge so that the resin bed is permanently fixed. Then, the XAD column inside the ASE cartridge is cleaned and conditioned. The sampling procedure involves conventional filtration with subsequent isolation of dissolved PAHs on an XAD-2 resin contained in the ASE cartridge. After sampling, the XAD-2 resin content inside the cartridge is eluted by ASE without any further sample preparation and subsequently reused. In order to validate the procedure, the PAHs were isolated from water samples from the Lake Maggiore (North of Italy) using both XAD-2 resin adsorption and hexane liquid-liquid extraction according to the International Standard Methodology ISO 17993. The mean percentages of deviation between concentrations obtained by both methodologies range from 6% for benzo(a)pyrene to 15% for fluoranthene and benzo(b,k)fluoranthene. Compared to the traditional techniques, this procedure offers numerous practical advantages: easy to perform, fast, savings in solvent volume and in time, all steps are fully automated thus avoiding any XAD-2 resin manipulation during and between steps and moreover, low detection limits were provided (0.001 ng l−1 for chrysene, benzo(b,k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene, and 0.01 ng l−1 for acenaphthylene and fluoranthene).This procedure was developed in the frame of a project aimed at evaluating the diffuse input of organic contaminants in the Lake Maggiore.  相似文献   

2.
A simple and rapid method for the highly sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in water was developed. Benzo[a]pyrene, benzo[k]fluoranthene, perylene, and pyrene in water were concentrated into sodium dodecyl sulfate (SDS)-alumina admicelles. The collection was performed by adding SDS and alumina particles into the sample solution at pH 2. After gentle mixing, the resulting suspension was passed through a membrane filter to collect the SDS admicelles containing highly concentrated PAHs. The filter was placed on a slide glass and then covered admicellar layer with a fused silica glass plate before setting in a fluorescence spectrometer. Benzo[a]pyrene, benzo[k]fluoranthene, perylene, and pyrene were selectively determined by the synchronous fluorescence scan (SFS) analysis with keeping wavelength intervals between excitation and emission to 98, 35, 29, and 45 nm, respectively. Because of the minimum spectral overlapping, 1-40 ng l−1 of benzo[a]pyrene, benzo[k]fluoranthene, and perylene as well as 10-150 ng l−1 of pyrene were selectively determined with eliminating the interferences of other 12 PAHs. The detection limits were 0.3 ng l−1 for benzo[a]pyrene, benzo[k]fluoranthene, and perylene, and 1 ng l−1 for pyrene. They were 2-3 orders of magnitude lower than the detection limits in normal aqueous micellar solutions. The application to water analysis was studied.  相似文献   

3.
A new method for determination of fatty acid amides in polyethylene packaging film was developed using gas chromatography/mass spectrometry (GC/MS). Liquid extraction, Soxhlet extraction ultrasonic-assisted extraction and pressurized solvent extraction (PSE) methods were compared and the results showed that pressurized solvent extraction was the best for extracting these compounds. After extraction, solvent was blown by nitrogen and a trifluoroethyl derivation step was carried out. The derivative compounds were identified and quantified by GC/MS using an HP-Innowax column. The retention times were 6.20 min for derivative hexadecanoamide, 8.56 min for derivative octadecanamide, 8.84 min for derivative oleamide and 13.68 min for derivative erucamide, respectively. The detection limits were 61.0 ng g−1, 74.0 ng g−1, 103.0 ng g−1, and 105.0 ng g−1, respectively, and the linearity were good. The proposed method was applied satisfactorily to determine these chemicals in different types of polyethylene samples.  相似文献   

4.
A rapid and sensitive method for the determination of carbendazim (methyl benzimidazole-2-ylcarbamate, MBC) and thiabendazole (TBZ) in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography with fluorescence detection. The water samples were directly used for the DLLME extraction. For soil samples, the target analytes were first extracted by 0.1 mol L−1 HCl. Then, the pH of the extract was adjusted to 7.0 with 2 mol L−1 NaOH before the DLLME extraction. In the DLLME extraction method, chloroform (CHCl3) was used as extraction solvent and tetrahydrofuran (THF) as dispersive solvent. Under the optimum conditions, the enrichment factors for MBC and TBZ were ranged between 149 and 210, and the extraction recoveries were between 50.8 and 70.9%, respectively. The linearity of the method was obtained in the range of 5-800 ng mL−1 for water sample analysis, and 10-1000 ng g−1 for soil samples, respectively. The correlation coefficients (r) ranged from 0.9987 to 0.9997. The limits of detection were 0.5-1.0 ng mL−1 for water samples, and 1.0-1.6 ng g−1 for soil samples. The relative standard deviations (RSDs) varied from 3.5 to 6.8% (n = 5). The recoveries of the method for MBC and TBZ from water samples at spiking levels of 5 and 20 ng mL−1 were 84.0-94.0% and 86.0-92.5%, respectively. The recoveries for soil samples at spiking levels of 10 and 100 ng g−1 varied between 82.0 and 93.4%.  相似文献   

5.
In this work, an isotope dilution method for the determination, in agricultural and industrial soil samples, of tetrabromobisphenol-A, tetrachlorobisphenol-A and bisphenol-A by gas chromatography–mass spectrometry was developed. The compounds were extracted from soil by sonication assisted extraction in small columns (SAESC) with a low volume of ethyl acetate as extraction solvent. For dirty soil samples, such as industrial soils, a simultaneous clean-up on an acidified Florisil–anhydrous sodium sulfate mixture was carried out to remove interferences. After extraction, solvent was evaporated and analytes were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC–MS–SIM), using 13C12 labeled compounds as internal standards. Recoveries from spiked samples were between 88% and 108% and the estimated limits of detection (S/N = 3) varied from 30 pg g−1 to 90 pg g−1. The response obtained with this method was linear over the range assayed, 5–300 ng ml−1, with correlation coefficients equal or higher than 0.999. The validated method was used to investigate the levels of these phenolic compounds in soil samples collected from different locations in Spain. Bisphenol-A was detected in all samples at concentrations from 0.7 ng g−1 to 4.6 ng g−1 in agricultural soils and from 1.1 ng g−1 to 44.5 ng g−1 in industrial soils. Tetrabromobisphenol-A was found in various soil samples at levels in the range of 3.4–32.2 ng g−1 in industrial soils and at 0.3 ng g−1 in one agricultural soil, whereas tetrachlorobisphenol-A was not detected.  相似文献   

6.
We describe here a method for detecting and quantifying the highly carcinogenic polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP) in water, based on a flow-trough optical sensor. The technique is fast (response time of 40 s) and simple and at the same time meets the standards of sensitivity and selectivity required by the European Guidelines on Water for Human Consumption. The optosensor is based on the on-line immobilization of BaP on a non-ionic resin (Amberlite XAD-4) solid support in a continuous-flow system. BaP was analyzed in a 15 mM H2PO4/HPO42− buffer solution with 25% (v/v) 1,4-dioxane at pH 7. Fluorescence intensity was measured at λex/em=392/406 nm. The experimental conditions (reagent phase, pH, type and concentration of buffer solution and organic solvent) and flow-injection values (flow rate and injection volume) were carefully controlled. Under these conditions the optosensor was sensitive to a linear concentration range of between 3.0 and 250.0 ng l−1 with a detection limit of 3.0 ng l−1 and a standard deviation of 1.5% at 150 ng l−1. The optosensor was applied to the quantification of BaP in drinking and waste water samples (95-105% recovery) in presence of the other 15 EPA PAHs at 1000 ng l−1 concentration level. The influence of other fluorescent polycyclic aromatic hydrocarbons and potential interference from ions usually present in water was also evaluated.  相似文献   

7.
Dispersive solid-phase extraction (DSPE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in soil prior to high-performance liquid chromatography with diode array detection (HPLC-DAD). In the DSPE-DLLME, sulfonylurea herbicides were first extracted from soil sample into acetone–0.15 mol L−1 NaHCO3 (2:8, v/v). The clean-up of the extract by DSPE was carried out by directly adding C18 sorbent into the extract solution, followed by shaking and filtration. After the pH of the filtrate was adjusted to 2.0 with 2 mol L−1 HCl, 60.0 μL chlorobenzene (as extraction solvent) was added into 5.0 mL of it for DLLME procedure (the acetone contained in the solution also acted as dispersive solvent). Under the optimum conditions, the enrichment factors for the compounds were in the range between 102 and 216. The linearity of the method was in the range from 5.0 to 200 ng g−1 with the correlation coefficients (r) ranging from 0.9967 to 0.9987. The method detection limits were 0.5–1.2 ng g−1. The relative standard deviations varied from 5.2% to 7.2% (n = 5). The relative recoveries of the four sulfonylurea herbicides from soil samples at spiking levels of 6.0, 20.0 and 60.0 ng g−1 were in the range between 76.3% and 92.5%. The proposed method has been successfully applied to the analysis of the four target sulfonylurea herbicides in soil samples, and a satisfactory result was obtained.  相似文献   

8.
A rapid technique based on dynamic microwave-assisted extraction (DMAE) coupled on-line with solid-phase extraction (SPE) was developed for the determination of sulfonamides (SAs) including sulfadiazine, sulfameter, sulfamonomethoxine and sulfaquinoxaline in soil. The SAs were first extracted with acetonitrile under the action of microwave energy, and then directly introduced into the SPE column which was packed with neutral alumina for preconcentration of analytes and clean-up of sample matrix. Subsequently, the SAs trapped on the alumina were eluted with 0.3% acetic acid aqueous solution and determined by liquid chromatography-tandem mass spectrometry. The DMAE parameters were optimized by the Box-Behnken design. Maximum extraction efficiency was achieved using 320 W of microwave power; 12 mL of extraction solvent and 0.8 mL min−1 of extraction solvent flow rate. The limits of detection and quantification obtained are in the range of 1.4-4.8 ng g−1 and 4.6-16.0 ng g−1 for the SAs, respectively. The mean values of relative standard deviation of intra- and inter-day ranging from 2.7% to 5.3% and from 5.6% to 6.7% are obtained, respectively. The recoveries of SAs obtained by analyzing four spiked soil samples at three fortified levels (20 ng g−1, 100 ng g−1 and 500 ng g−1) were from 82.6 ± 6.0% to 93.7 ± 5.5%. The effect of standing time of spiked soil sample on the SAs recoveries was examined. The recoveries of SAs decreased from (86.3-101.9)% to (37.6-47.5)% when the standing time changed from one day to four weeks.  相似文献   

9.
A new method for the determination of aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, AFG2) in cereal flours based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (SPME–HPLC–PD–FD) has been developed. Aflatoxins were extracted from cereal flour samples by a methanol:phosphate buffer (pH 5.8, I = 0.1) (80:20, v/v) solution, followed by a SPME step. Different SPME and HPLC–PD–FD parameters (fiber polarity, temperature, pH, ionic strength, adsorption and desorption time, mobile phase) have been investigated and optimized. This method, which was assessed for the analysis of different cereal flours, showed interesting results in terms of LOD (from 0.035 to 0.2 ng g−1), LOQ (from 0.1 to 0.63 ng g−1, respectively), within and inter-day repeatability (2.27% and 5.38%, respectively) linear ranges (up to 20 ng g−1 for AFB1 and AFG1 and 6 ng g−1 for AFB2 and AFG2), and total raw extraction efficiency (in the range 55–59% at concentrations in the range 0.3–1 ng g−1 and 49–52% at concentrations in the range 1–10 ng g−1). The results were also compared with the purification step carried out by conventional immunoaffinity columns.  相似文献   

10.
A single-step, environmentally friendly sample treatment was developed and used in combination with liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the quantitation of hexabromocyclododecane (HBCD) stereoisomers in fish. It was based on the microextraction of the stereoisomers with a supramolecular solvent (SUPRAS) made up of reverse aggregates of decanoic acid (DeA). The procedure involved the stirring of the fish sample (750 mg) with 600 μL of SUPRAS for five minutes, subsequent centrifugation for extract separation from matrix components and direct analysis of the extract after dilution 1:1 with methanol. Individual enantiomers of α-, β- and γ-HBCD were separated on a chiral stationary phase of β-cyclodextrin and quantified by monitoring of the [M−H] → Br transition at m/z 640.9→80.9. Driving forces for the microextraction of HBCD in the SUPRAS involved both dispersion and dipole–dipole interactions. Quantitation limits for the determination of individual HBCD enantiomers in hake, cod, sole, panga, whiting and sea bass were within the intervals 0.5–3.4 ng g−1, 0.9–2.5 ng g−1, 0.6–1.4 ng g−1, 1.0–5.6 ng g−1, 0.8–1.3 ng g−1 and 0.5–3.5 ng g−1, respectively. Recoveries for fish samples fortified at the ng g−1 level ranged between 87 and 114% with relative standard deviations from 1 to 10%. The sample treatment proposed greatly simplifies current procedures for extraction of HBCD stereoisomers and is a useful tool for the development of a large scale database for their presence in fish.  相似文献   

11.
A rapid and sensitive method has been developed for the simultaneous detection of cyromazine and melamine in chicken eggs using the quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS). The optimal extraction solvent for the liquid–liquid extraction was 5 mL of acetonitrile with a 0.1 M hydrochloric acid aqueous solution (99.5:0.5, v/v). The extract was cleaned with 0.5 g of anhydrous magnesium sulfate and 10 mg of graphitized carbon black. The analysis of cyromazine and melamine was accomplished by combining the use of an anion exchange LC column with tandem mass spectrometry in the positive electrospray ionization mode with selected reaction monitoring mode (SRM). The detection limits were 1.6 ng g−1 for cyromazine and 8 ng g−1 for melamine, and the quantitation limits were 5.5 ng g−1 for cyromazine and 25 ng g−1 for melamine. The recoveries of cyromazine and melamine in the spiked egg samples were 83.2% and 104.6%, respectively, with an relative standard deviation (RSD) of less than 18.1%. The intra-day and inter-day precisions, represented by the RSD, ranged from 1.5% to 8.8% and 6.8% to 14.3%, respectively. The proposed method was tested by analyzing chicken eggs from the markets and from the veterinary medicine laboratory. The concentrations of cyromazine and melamine detected in these samples were in the range of 20–94 ng g−1. The results demonstrated that the QuEChERS method combined with LC–MS/MS is a simple, rapid and inexpensive method for the analysis of cyromazine and melamine in eggs.  相似文献   

12.
Coacervative microextraction ultrasound-assisted back-extraction technique (CME-UABE) is proposed for the first time for extracting and preconcentrating organophosphates pesticides (OPPs) from honey samples prior to gas chromatography–mass spectrometry (GC–MS) analysis. The extraction/preconcentration technique is supported on the micellar organized medium based on non-ionic surfactant. To enable coupling the proposed technique with GC, it was required to back extract the analytes into hexane. Several variables including, surfactant type and concentration, equilibration temperature and time, matrix modifiers, pH and buffers nature were studied and optimized over the relative response of the analytes. The best working conditions were as follows: an aliquot of 10 mL 50 g L−1 honey blend solution was conditioned by adding 100 μL 0.1 mol L−1 hydrochloric acid (pH 2) and finally extracted with 100 μL Triton X-114 100 g L−1 at 85 °C for 5 min using CME technique. Under optimal experimental conditions, the enrichment factor (EF) was 167 and limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N = 3), ranged between 0.03 and 0.47 ng g−1. The method precision was evaluated over five replicates at 1 ng g−1 with RSDs ≤9.5%. The calibration graphs were linear within the concentration range of 0.3–1000 ng g−1 for chlorpirifos; and 1–1000 ng g−1 for fenitrothion, parathion and methidathion, respectively. The coefficients of correlation were ≥0.9992. Validation of the methodology was performed by standard addition method at two concentration levels (2 and 20 ng g−1). The recoveries were ≥90%, indicating satisfactory robustness of the methodology, which could be successfully applied for determination of OPPs in honey samples of different Argentinean regions. Two of the analyzed samples showed levels of methidathion ranged between 1.2 and 2.3 ng g−1.  相似文献   

13.
A method for the determination of 11 UV-filter compounds in sludge has been developed and evaluated. The procedure includes the use of non-porous polymeric membranes in combination with pressurised liquid extraction (PLE). Firstly, the solid sample, wetted with the extraction solvent, was enclosed into tailor-made bags prepared with low density polyethylene. Secondly, these packages were submitted to a conventional PLE (70 °C, 4 cycles of 5 min static time). Finally, the analytes were determined by liquid chromatography–atmospheric pressure photoionisation–tandem mass spectrometry. The main advantage of this procedure is the reduction of time, solvent and labour effort ought to the combination of extraction and clean-up in a single step. Although the extraction is not quantitative (thus, standard addition is recommended for quantification) selectivity is clearly gained using the membrane as a consequence of the differences of permeation and transport through the membrane between the analytes and other sample matrix components. The optimised protocol provides limits of detection ranging from 0.3 ng g−1 (ethylhexyl dimethyl p-aminobenzoate (OD-PABA)) to 25 ng g−1 (ethylhexyl triazone (EHT)) with only 0.5 g of sludge sample. All the studied UV filters were found in the samples at concentration levels between 1.4 and 2479 ng g−1, emphasising the high adsorption potential of this kind of environmental pollutants onto solid samples such as sludge. Also, this method has permitted the determination of seven of the studied UV filters in sludge samples for the first time.  相似文献   

14.
The total and bioaccessible concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in soil from a former industrial site was investigated. Typical total concentrations across the sampling sites ranged from 1.5 mg kg−1 for acenaphthylene up to 243 mg kg−1 for fluoranthene. The oral bioaccessibility of PAHs in soil was assessed using an in vitro gastrointestinal extraction (Fed Organic Estimation human Simulation Test, FOREhST method). The oral bioaccessibility data indicated that fluorene, phenanthrene, chrysene, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene had the highest % bioaccessible fraction (based on their upper 75th percentile values being >60%) while the other PAHs had lower % bioaccessible fractions (means ranging between 35 and 59%). Significantly lower bioaccessibilities were determined for naphthalene. With respect to method validation and inter-laboratory comparison, the total and bioaccessible concentrations of benzo(a)anthracene, benzo(b)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene was compared to published data derived using the same samples. The total PAH concentrations at the site were compared with generic assessment criteria (GAC) using the residential land use scenario (with plant uptake at 6% soil organic matter). Concentrations of 7 of the PAHs investigated within the soils could lead to an unacceptable risk to human health at this site.  相似文献   

15.
C. Juan  A. Pena  J. Mañes 《Talanta》2007,73(2):246-250
Ochratoxin A (OTA) is a secondary fungal metabolite produced by several moulds, mainly by Aspergillus ochraceus, A. carbonarius, A. niger and by Penicillium verrucosum. The present work shows the results of comparative studies using different procedures for the analysis of OTA in maize bread samples. The studied analytical methods involved extraction with different volumes of PBS/methanol, different extraction apparatus, and clean-up through immunoaffinity columns. The separation and identification were carried out by high-performance liquid chromatography with fluorescence detection. The optimized method for analysis of OTA in maize bread involved extraction with PBS:methanol (50:50), and clean-up with IAC column. The limit of quantification was 0.033 ng g−1. Recoveries ranged from 87% to 102% for fortifications at 2.000 and 0.500 ng g−1, respectively, within-day R.S.D. of 1.4% and 4.7%. The proposed method was applied to 15 samples and the presence of OTA was found in nine samples at concentrations ranging from nd to 2.650 ng g−1.  相似文献   

16.
Polyclonal antibody (PAb) with broad-specificity for O,O-diethyl organophosphorus pesticides (OPs) against a generic hapten, 4-(diethoxyphosphorothioyloxy)benzoic acid, was produced. The obtained PAb showed high sensitivity to seven commonly used O,O-diethyl OPs in a competitive indirect enzyme-linked immunosorbent assay (ciELISA) using a heterologous coating antigen, 4-(3-(diethoxyphosphorothioyloxy)phenylamino)-4-oxobutanoic acid. The 50% inhibition value (IC50) was 348 ng mL−1 for parathion, 13 ng mL−1 for coumaphos, 22 ng mL−1 for quinalphos, 35 ng mL−1 for triazophos, 751 ng mL−1 for phorate, 850 ng mL−1 for dichlofenthion, and 1301 ng mL−1 for phoxim. The limit of detection (LOD) met the ideal detection criteria of all the seven OP residues. A quantitative structure-activity relationship (QSAR) model was constructed to study the mechanism of antibody recognition using multiple linear regression analysis. The results indicated that the frontier-orbital energies (energy of the highest occupied molecular orbital, EHOMO, and energy of the lowest unoccupied molecular orbital, ELUMO) and hydrophobicity (log of the octanol/water partition coefficient, log P) were mainly responsible for the antibody recognition. The linear equation was log(IC50) = −63.274EHOMO + 15.985ELUMO + 0.556 log P − 25.015, with a determination coefficient (r2) of 0.908.  相似文献   

17.
Amorim FA  Ferreira SL 《Talanta》2005,65(4):960-964
In the present paper, a simultaneous pre-concentration procedure for the sequential determination of cadmium and lead in table salt samples using flame atomic absorption spectrometry is proposed. This method is based on the liquid-liquid extraction of cadmium(II) and lead(II) ions as dithizone complexes and direct aspiration of the organic phase for the spectrometer. The sequential determination of cadmium and lead is possible using a computer program. The optimization step was performed by a two-level fractional factorial design involving the variables: pH, dithizone mass, shaking time after addition of dithizone and shaking time after addition of solvent. In the studied levels these variables are not significant. The experimental conditions established propose a sample volume of 250 mL and the extraction process using 4.0 mL of methyl isobutyl ketone. This way, the procedure allows determination of cadmium and lead in table salt samples with a pre-concentration factor higher than 80, and detection limits of 0.3 ng g−1 for cadmium and 4.2 ng g−1 for lead. The precision expressed as relative standard deviation (n = 10) were 5.6 and 2.6% for cadmium concentration of 2 and 20 ng g−1, respectively, and of 3.2 and 1.1% for lead concentration of 20 and 200 ng g−1, respectively. Recoveries of cadmium and lead in several samples, measured by standard addition technique, proved also that this procedure is not affected by the matrix and can be applied satisfactorily for the determination of cadmium and lead in saline samples. The method was applied for the evaluation of the concentration of cadmium and lead in table salt samples consumed in Salvador City, Bahia, Brazil.  相似文献   

18.
An automated, confirmatory and sensitive procedure has been developed and validated for the determination of Sudan (I-IV), Sudan Orange G, Sudan Red 7B and Para Red in hot chilli food samples. The proposed method includes pressurised liquid extraction (PLE) with acetone, gel permeation chromatography (GPC) clean-up and detection by liquid chromatography (LC) coupled to electrospray ionization in positive mode tandem mass spectrometry (ESI-MS-MS). The main parameters affecting the performance of the different ionization sources and PLE parameters were previously optimised using statistical design of experiments (DOE). The method was in-house validated on chilli powder and chilli meat. Linear calibrations were obtained with correlation coefficients R2 > 0.999. The limits of detection (LOD) and quantification (LOQ) of the method were in the ranges of 0.002-0.012 ng g−1 and 0.006-0.036 ng g−1, respectively for chilli powder. The decision limit and detection capability were between 0.005-0.022 ng g−1 and 0.007-0.026 ng g−1, respectively for chilli meat. Recoveries ranged from 94% to 105%. The applicability of the method to the determination of azo-dyes in hot chilli products was demonstrated.  相似文献   

19.
A method for the determination of iron in indium phosphide (InP) wafer is proposed. In the present experiment, an on-line matrix separation system using an ion exchange column was combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of ng g−1 level of iron. In the on-line matrix separation, indium and iron in the sample solution was passed through a strongly-basic anion exchange resin column with the 9 M HCl carrier solution, where indium was eluted from the column and iron was adsorbed on it. Then, iron was eluted with the carrier solution of 0.3 M HCl containing 1 ng ml−1 cobalt, and it was directly introduced into the ICP-MS nebulizer. In ICP-MS measurement, cobalt in the carrier solution was used as an internal standard to correct the change in sensitivity due to matrix effect, and the peak area integration was performed to quantify iron and cobalt in the integration time range of 20-60 s from the start of the cobalt solution flow. The detection limit (3σ) for iron was 3 ng g−1, and the recoveries for iron in the 0.8, 2.4, and 8.0% indium solutions were almost 100%. The method was applied to the determination of iron in commercially available iron-doped InP wafers. The obtained results for InP wafer samples with the high iron concentration were in good agreement with those obtained by graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

20.
Ultrasound-assisted leaching-dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction (USAL-DSPE-DLLME) technique has been developed as a new analytical approach for extracting, cleaning up and preconcentrating polybrominated diphenyl ethers (PBDEs) from sediment samples prior gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. In the first place, PBDEs were leached from sediment samples by using acetone. This extract was cleaned-up by DSPE using activated silica gel as sorbent material. After clean-up, PBDEs were preconcentrated by using DLLME technique. Thus, 1 mL acetone extract (disperser solvent) and 60 μL carbon tetrachloride (extraction solvent) were added to 5 mL ultrapure water and a DLLME technique was applied. Several variables that govern the proposed technique were studied and optimized. Under optimum conditions, the method detection limits (MDLs) of PBDEs calculated as three times the signal-to-noise ratio (S/N) were within the range 0.02-0.06 ng g−1. The relative standard deviations (RSDs) for five replicates were <9.8%. The calibration graphs were linear within the concentration range of 0.07-1000 ng g−1 for BDE-47, 0.09-1000 ng g−1 for BDE-100, 0.10-1000 ng g−1 for BDE-99 and 0.19-1000 ng g−1 for BDE-153 and the coefficients of estimation were ≥0.9991. Validation of the methodology was carried out by standard addition method at two concentration levels (0.25 and 1 ng g−1) and by comparing with a reference Soxhlet technique. Recovery values were ≥80%, which showed a satisfactory robustness of the analytical methodology for determination of low PBDEs concentration in sediment samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号