首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
Cui G  Ye Z  Chen J  Wang G  Yuan J 《Talanta》2011,84(3):971-976
Time-resolved (or time-gated) luminescence detection technique using lanthanide chelates as luminescent probes is a widely used and highly sensitive method for the biological applications. The developments of various functional lanthanide probes that can selectively recognize the biological targets are the essential objective of the technique. In this work, a unique Tb3+ chelate-based luminescent probe, N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-(p-aminophenoxy)methylene-pyridine] tetrakis(acetate)-Tb3+(BMPTA-Tb3+), has been designed and synthesized for highly selective and sensitive time-resolved luminescence detection of one highly reactive oxygen species (ROS), hydroxyl radical (OH). The probe is almost non-luminescent, and can selectively react with hydroxyl radical to afford a highly luminescent Tb3+ chelate, N,N,N1,N1-[2,6-bis(3′-aminomethyl-1′-pyrazolyl)-4-hydroxymethyl-pyridine] tetrakis(acetate)-Tb3+ (BHTA-Tb3+), accompanied by a 49-fold increase in luminescence quantum yield with a long luminescence lifetime (2.76 ms). The luminescence response of the probe to hydroxyl radical is highly selective and insensitive to pH in the physiological pH range. For loading the probe into the living cells, the acetoxymethyl ester of BMPTA-Tb3+ was synthesized and used for the HeLa cell loading. Based on this probe, a background-free time-resolved luminescence imaging method for detecting hydroxyl radical in living cells was successfully established.  相似文献   

2.
We introduce a switchable lanthanide luminescence reporter technology based closed-tube PCR for the detection of specific target DNA sequence. In the switchable lanthanide chelate complementation based reporter technology hybridization of two nonfluorescent oligonucleotide probes to the adjacent positions of the complementary strand leads to the formation of a highly fluorescent lanthanide chelate complex. The complex is self-assembled from a nonfluorescent lanthanide chelate and a light-harvesting antenna ligand when the reporter molecules are brought into close proximity by the oligonucleotide probes. Outstanding signal-to-background discrimination in real-time PCR assay was achieved due to the very low background fluorescence level and high specific signal generation. High sensitivity of the reporter technology allows the detection of a lower concentration of amplified DNA in the real-time PCR, resulting in detection of the target at the earlier amplification cycle compared to commonly used methods.  相似文献   

3.
Lanthanides are attractive as biolabels because their long luminescence decay rates allow time-gated detection, which separates background scattering and fluorescence from the lanthanide emission. A stable and highly luminescent terbium complex based on a tetraisophthalamide (TIAM) chelate is paired with a polyaromatic-azo dark quencher (referred to as a Black Hole Quencher or BHQ) to prepare a series of 5'TIAM(Tb)/3'BHQ dual-labeled oligonucleotide probes with no secondary structure. Luminescence quenching efficiency within terbium/BHQ probes is very dependent on the terbium-BHQ distance. In an intact probe, the average terbium-BHQ distance is short, and Tb --> BHQ energy transfer is efficient, decreasing both the terbium emission intensity and lifetime. Upon hybridization or nuclease digestion, which spatially separate the Tb and BHQ moieties, the Tb luminescence intensity and lifetime increase. As a result, time-gated detection increases the emission intensity ratio of the unquenched probe/quenched probe due to the shorter lifetime of the quenched species. A 40-mer probe that has a 3-fold increase in steady-state luminescence upon digestion has a 50-fold increase when gated detection is used. This study demonstrates that time gating with lanthanide/dark quencher probes in energy transfer assays is an effective means of improving sensitivity.  相似文献   

4.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu3+ and Tb3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu3+ is strongly dependent on the pH values in weakly acidic to neutral media (pKa = 5.8, pH 4.8–7.5), while that of HTTA–Tb3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu3+ and HTTA–Tb3+ (the HTTA–Eu3+/Tb3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb3+ emission at 540 nm to its Eu3+ emission at 610 nm, I540 nm/I610 nm, as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu3+/Tb3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A290 nm/A325 nm, as a signal. This feature enables the HTTA–Eu3+/Tb3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA–Eu3+ and HTTA–Tb3+ into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.  相似文献   

5.
A highly sensitive and label-free impedimetric biosensor is achieved based on an adjunct probe attached nearby the capture probe. In this work, the adjunct probe was co-assembled on the surface of gold electrode with the capture probe hybridized with the reporter probe, and then 6-mercapto-1-hexanol was employed to block the nonspecific binding sites. When target DNA was added, the adjunct probe functioned as a fixer to immobilize the element of reporter probe displaced by the target DNA sequences and made the reporter probe approach the electrode surface, leading to effective inhibition of charge transfer. The increase in charge transfer resistance is related to the quantity of the target DNA in a wide range. The linear range for target DNA with specific sequences was from 0.1 nM to 0.5 μM with a good linearity (R = 0.9988) and a low detection limit of 6.3 pM. This impedimetric biosensor has the advantages of simplicity, sensitivity, good selectivity, and large dynamic range.  相似文献   

6.
The interaction of oligochitosan and tobacco cells has been investigated by fluorometric method using two Eu3+ complexes as the probes in this work. Based on the reaction of tobacco cells with oligochitosan conjugated to a strongly fluorescent Eu3+ complex 4,4′-bis(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedion-6″-yl)chlorosulfo-o-terphenyl-Eu3+ (oligochitosan-BHHCT-Eu3+ conjugate), the binding kinetic process of oligochitosan-tobacco cells was fluorescently imaged. The results indicate that oligochitosan can be specifically bound to the walls as well as the membranes of tobacco cells. A sensitive and selective Eu3+ complex luminescence probe specific for singlet oxygen, [4′-(10-methyl-9-anthryl)-2,2′:6′,2″-terpyridine-6,6″-diyl]bis(methylenenitrilo)tetrakis (acetate)-Eu3+, was used for developing a new time-resolved fluorescence assay method for the determinations of indole-3-acetic acid (IAA) and peroxidase produced in the cells during the interaction of oligochitosan and tobacco cells. The assays are sensitive with the detection limits of 32 nM for IAA, and 1.2 nM for peroxidase, respectively. The concentration changes of IAA and peroxidase induced by oligochitosan in tobacco cells reveal that oligochitosan can effectively induce the increase of IAA concentration, accompanied by the decrease of peroxidase concentration. These results give a primary and reliable evidence to explain the growth-promoting mechanism of oligochitosan on the plants at molecular level.  相似文献   

7.
A novel multiplexed method for short RNA detection is reported that employs a design strategy in which capture and reporter probes anneal to each other in the presence of a short RNA target via the formation of a stable three-component complex. Quantum dots (QDs) functionalized with reporter DNA are thus specifically bound onto a capture probe-modified 96-well plate by one-step hybridization for simple RNA detection. In comparison with conventional organic dye-modified reporter probes, the use of reporter DNA-modified QD conjugates increase the melting temperature and lead to the detection of short RNA without the need for a ligation reaction. Moreover, QD properties allow multiple short RNA sequences to be simultaneously determined via rapid and simple one-step hybridization, as exemplified herein. The present results clearly demonstrate that this new strategy can be used to detect dual-short RNA sequence at concentrations of 10 pM in 100 μL.  相似文献   

8.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg2+ based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg2+ biosensor, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a bifunctional oligonucleotide signal probe was hybridized with the immobilized capture probe through thymine–mercury(II)–thymine interaction-mediated surface hybridization. The further interaction between G4 sequence of the signal probe and hemin generated a G4–hemin complex, which catalyzed the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+ interaction events. This electrochemical Hg2+ biosensor was highly sensitive and selective to Hg2+ in the concentration of 1.0 nM to 1 μM with a detection limit of 0.5 nM. The new design of bifunctional oligonucleotide signal probes also provides a potential alternative for developing simple and effective electrochemical biosensors capable of detecting other metal ions specific to natural or artificial bases.  相似文献   

9.
In the present study, we investigated the properties of PNA and LNA capture probes in the development of an electrochemical hybridization assay. Streptavidin-coated paramagnetic micro-beads were used as a solid phase to immobilize biotinylated DNA, PNA and LNA capture probes, respectively. The target sequence was then recognized via hybridization with the capture probe. After labeling the biotinylated hybrid with a streptavidin–enzyme conjugate, the electrochemical detection of the enzymatic product was performed onto the surface of a disposable electrode. The assay was applied to the analytical detection of biotinylated DNA as well as RNA sequences. Detection limits, calculated considering the slope of the linear portion of the calibration curve in the range 0–2 nM were found to be 152, 118 and 91 pM, coupled with a reproducibility of the analysis equal to 5, 9 and 6%, calculated as RSD%, for DNA, PNA and LNA probes respectively, using the DNA target. In the case of the RNA target, the detection limits were found to be 51, 60 and 78 pM for DNA, PNA and LNA probes respectively.  相似文献   

10.
A magnetic capture-based, surface-enhanced Raman scattering (SERS) assay for DNA detection has been developed which utilizes Au-coated paramagnetic nanoparticles (Au@PMPs) as both a SERS substrate and effective bioseparation reagent for the selective removal of target DNAs from solution. Hybridization reactions contained two target DNAs, sequence complementary reporter probes conjugated with spectrally distinct Raman dyes distinct for each target, and Au@PMPs conjugated with sequence complementary capture probes. In this case, target DNAs were derived from the RNA genomes of the Rift Valley Fever virus (RVFV) or West Nile virus (WNV). The hybridization reactions were incubated for a short period and then concentrated within the focus beam of an interrogating laser by magnetic pull-down. The attendant SERS response of each individually captured DNA provided a limit of detection sensitivity in the range 20-100 nM. X-ray diffraction and UV-vis analysis validated both the desired surface plasmon resonance properties and bimetallic composition of synthesized Au@PMPs, and UV-vis spectroscopy confirmed conjugation of the Raman dye compounds malachite green (MG) and erythrosin B (EB) with the RVFV and WNV reporter probes, respectively. Finally, hybridization reactions assembled for multiplexed detection of both targets yielded mixed MG/EB spectra and clearly differentiated peaks which facilitate the quantitative detection of each DNA target. On the basis of the simple design of a single-particle DNA detection assay, the opportunity is provided to develop magnetic capture-based SERS assays that are easily assembled and adapted for high-level multiplex detection using low-cost Raman instrumentation.  相似文献   

11.
We report herein an exonuclease-assisted aptamer-based target recycling amplification strategy for sensitive and selective chemiluminescence (CL) determination of adenosine. This aptasensor is based on target-induced release of aptamers from capture probes immobilized on the 96-well plate surface, and thus leading to a decreased hybridization with gold nanoparticle-functionalized reporter sequences followed by a CL signal. The introduction of exonuclease III catalyzes the stepwise removal of mononucleotides from 3′-hydroxyl termini of duplex DNAs of aptamers, liberating the adenosine. Therefore, a single copy of target adenosine can lead to the release and digestion of numerous aptamer strands from the 96-well plates and ultimately an enhanced sensitivity is achieved. Experimental results revealed that the exonuclease-assisted recycling strategy enabled the monitoring of adenosine with wide working ranges and low detection limits (LOD: 0.5 nM). This new CL strategy might create a novel technology for the detection of various targets and could find wide applications in the environmental and biomedical fields.  相似文献   

12.
Luminescent lanthanide complexes (Tb(3+), Eu(3+), etc.) have excellent properties for biological applications, including extraordinarily long lifetimes and large Stokes shifts. However, there have been few reports of lanthanide-based functional probes, because of the difficulty in designing suitable complexes with a luminescent on/off switch. Here, we have synthesized a series of complexes which consist of three moieties: a lanthanide chelate, an antenna, and a luminescence off/on switch. The antenna is an aromatic ring which absorbs light and transmits its energy to the metal, and the switch is a benzene derivative with a different HOMO level. If the HOMO level is higher than a certain threshold, the complex emits no luminescence at all, which indicates that the lanthanide luminescence can be modulated by photoinduced electron transfer (PeT) from the switch to the sensitizer. This approach to control lanthanide luminescence makes possible the rational design of functional lanthanide complexes, in which the luminescence property is altered by a biological reaction. To exemplify the utility of our approach to the design of lanthanide complexes with a switch, we have developed a novel protease probe, which undergoes a significant change in luminescence intensity upon enzymatic cleavage of the substrate peptide. This probe, combined with time-resolved measurements, was confirmed in model experiments to be useful for the screening of inhibitors, as well as for clinical diagnosis.  相似文献   

13.
Ruping Liu  Juntao Liu  Mixia Wang  Jinping Luo 《Talanta》2010,81(3):1016-14792
In this paper, a simple, rapid and low-cost method for the high-sensitivity detection of brain natriuretic peptide (BNP) was developed, which adopted three amplification steps: (a) biotin-streptavidin amplification; (b) micro-magnetic probe amplification; (c) HRP (horseradish peroxidase) signal amplification. In the present strategy, the streptavidin-coated micro-magnetic particles (MMPs) were first conjugated with biotin-labeled capture antibody via the biotin-streptavidin interaction, which formed bio-functional micro-magnetic probes. Then, the analyte (antigen) is sandwiched by HRP-labeled antibody and capture antibody bound to MMPs. Finally, the HRP at the surface of sandwich structures catalytically oxidized the substrate and generated optical signals that reflected the amount of the target BNP. The influence of some important parameters such as the size of magnetic particles, the working concentration of HRP-labeled BNP antibody, the stability of magnetic probes, and the assay medium of serum BNP, etc. on the detection ability of present method was investigated in details. It is found that the detection limit of the proposed method could reach 10 pg/mL for BNP, which is much lower than that of sandwich-type ELISA. Furthermore, this detection time for the proposed method just takes about 30 min (two reaction steps and one wash step), which is faster than that of conventional sandwich-type ELISA (taking about 4 h, three reaction steps and three wash steps). Inspired by these advantages, it is expected that this method can probably be applicable to the detection of other hormones and tumor markers that are present in only low concentrations within the human body.  相似文献   

14.
Monodisperse aqueous upconverting nanoparticles (UCNPs) were covalently immobilized on aldehyde modified cellulose paper via reduction amination to develop a luminescence resonance energy transfer (LRET)-based nucleic acid hybridization assay. This first account of covalent immobilization of UCNPs on paper for a bioassay reports an optically responsive method that is sensitive, reproducible and robust. The immobilized UCNPs were decorated with oligonucleotide probes to capture HPRT1 housekeeping gene fragments, which in turn brought reporter conjugated quantum dots (QDs) in close proximity to the UCNPs for LRET. This sandwich assay could detect unlabeled oligonucleotide target, and had a limit of detection of 13 fmol and a dynamic range spanning nearly 3 orders of magnitude. The use of QDs, which are excellent LRET acceptors, demonstrated improved sensitivity, limit of detection, dynamic range and selectivity compared to similar assays that have used molecular fluorophores as acceptors. The selectivity of the assay was attributed to the decoration of the QDs with polyethylene glycol to eliminate non-specific adsorption. The kinetics of hybridization were determined to be diffusion limited and full signal development occurred within 3 min.  相似文献   

15.
Luminescent lanthanide complexes incorporating Yb(3+) and Nd(3+) are attracting much attention as imaging agents, but there have been few practical methods to make responsive sensors with these complexes. Here, we introduce a general strategy to synthesize near-infrared luminescent probes by conjugating a Yb(3+) chelate to established fluorescein-based probes. As the first demonstration, we present a complex, based on the green-emitting probe DAF-4, that responds to nitric oxide (NO) in aqueous solution with a significant increase in luminescence intensity at 980 nm.  相似文献   

16.
A rapid detection method for nucleic acid based on bioluminescence resonance energy transfer (BRET) from the luminescence donor Renilla luciferase to an acceptor quantum dot upon oligonucleotide probe hybridization has been developed. Utilizing a competitive assay, we detected the target nucleic acid by correlating the BRET signal with the amount of target present in the sample. This method allows for the detection of as little as 4 pmol (20 nM) of nucleic acid in a single-step, homogeneous format both in vitro in a buffer matrix as well as in a cellular matrix. Using this method, one may perform nucleic acid detection in as little as 30 min, showing much improvement over time-consuming blotting methods and solid-phase methods which require multiple wash steps to remove unbound probe. This is the first report on the use of quantum dots as a BRET acceptor in the development of a nucleic acid hybridization assay. An erratum to this article can be found at  相似文献   

17.
A detection system for a human papillomavirus (HPV) DNA chip based on the light scattering of aggregated silica nanoparticle probes is presented. In the assay, a target HPV DNA is sandwiched between the capture DNA immobilized on the chip and the probe DNA immobilized on the plain silica nanoparticle. The spot where the sandwich reaction occurs appears bright white and is readily distinguishable to the naked eye. Scanning electron microscopy images clearly show the aggregation of the silica nanoparticle probes. When three different sized (55 nm, 137 nm, 286 nm) plain silica nanoparticles were compared, probes of the larger silica nanoparticles showed a higher scattering intensity. Using 286-nm silica nanoparticles, the spots obtained with 200 pM of target DNA were visually detectable. The demonstrated capability to detect a disease related target DNA with direct visualization without using a complex detection instrument provides the prerequisite for the development of portable testing kits for genotyping.  相似文献   

18.
A new strategy for accessing analyte-responsive luminescent probes is presented. The lanthanide luminescence of Eu and Tb centers is switched on by the analyte-triggered formation of a sensitizing antenna from a nonsensitizing caged precursor. As the cage can be freely varied, an array of probes for different analytes (Pd(0/2+), H(2)O(2), F(-), β-galactosidase) can be created from the same core structure. The probe design affords nanomolar to micromolar detection limits, provides the capability to detect two analytes in parallel, and can be utilized to monitor enzymatic activity in live cells.  相似文献   

19.
Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33 nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins.  相似文献   

20.
Methods based on metal nanotags have been developed for metallobioassay of nucleic acids, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Herein, we report the proof-of-concept of a novel and label-free metallobioassay for ultrasensitive electronic determination of human immunodeficiency virus (HIV)-related gene fragments at an ultralow concentration based on target-triggered long-range self-assembled DNA nanostructures and DNA-based hybridization chain reaction (HCR). The signal is amplified by silver nanotags on the DNA duplex. The assay mainly consists of capture probe, detection probe, and two different DNA hairpins. In the presence of target DNA, the capture probe immobilized on the sensor sandwiches target DNA with the 3′ end of detection probe. Another exposed part of detection probe at the 5′ end opens two alternating DNA hairpins in turn, and propagates a chain reaction of hybridization events to form a nicked double-helix. Finally, numerous silver nanotags are immobilized onto the long-range DNA nanostructures, each of which produces a strong electronic signal within the applied potentials. Under optimal conditions, the target-triggered long-range DNA nanostructures present good electrochemical behaviors for the detection of HIV DNA at a concentration as low as 0.5 fM. Importantly, the outstanding sensitivity can make this approach a promising scheme for development of next-generation DNA sensors without the need of enzyme labeling or fluorophore labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号