首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscosities, densities, and speed of sound have been measured over the whole composition range for (methylcyclopentane with ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, and 2-pentanol) at T = (293.15, 298.15, and 303.15) K and atmospheric pressure along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility, and viscosity deviations for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich–Kister equation to determine the fitting parameters and the root-mean square deviations. UNIQUAC equation was used to correlate the experimental data. Dynamic viscosities of the binary mixtures have been predicted using UNIFAC-VISCO and ASOG-VISCO methods.  相似文献   

2.
《Fluid Phase Equilibria》2006,239(2):146-155
This work reports the measured density, ρ, and viscosity, η, values of liquid mixtures of tetrahydrofuran (1) + 1-chlorobutane (2) + 2-butanol (3) at temperatures of 283.15, 298.15 and 313.15 K over a range of mole fractions and atmospheric pressure. Excess molar volume, VE, viscosity deviations, Δη, and excess free energies of activation of viscous flow, ΔG*E, have been calculated from experimental data and fitted to Cibulka, Singh et al. and Nagata and Sakura equations. The results were analyzed in terms of the molecular interaction between the components of the mixtures. Excess molar volumes and viscosity deviations were predicted from binary contributions using geometrical solution models, Tsao and Smith; Jacob and Fitzner; Kholer; Rastogi et al.; Radojkovic et al. Finally, experimental results are compared with those obtained by applying group-contribution method proposed by Wu.  相似文献   

3.
Density and viscosity of binary mixtures of (x13-amino-1-propanol + x2isobutanol) and (x13-amino-1-propanol + x22-propanol) were measured over the entire composition range and from temperatures (293.15 to 333.15) K at ambient pressure. The excess molar volumes and viscosity deviations were calculated and correlated by the Redlich–Kister (RK) equation. The thermal expansion coefficient and its excess value, isothermal coefficient of excess molar enthalpy, and excess partial molar volumes were determined by using the experimental values of density and are described as a function of composition and temperature. The excess molar volumes are negative over the entire mole fraction range for both mixtures and increase with increasing temperature. The excess molar volumes obtained were correlated by the Prigogine–Flory–Patterson (PFP) model. The viscosity deviations of the binary mixtures are negative over the entire composition range and decrease with increasing temperature.  相似文献   

4.
Density and viscosity were determined for binary mixtures of {hyper-branched polymer, Boltorn H2004 (B-H2004) + 1-alcohol (1-butanol, 1-hexanol, and 1-octanol)} at T = (298.15, 308.15, 318.15, 328.15, and 338.15) K and of {B-H2004 + methyl tert-butyl ether (MTBE)} at T = (298.15, 308.15, and 318.15) K and ambient pressure. The temperature dependence of density and viscosity is described by linear regression and by the Vogel–Fucher–Tammann equation, respectively. Excess volumes for the system {B-H2004 + MTBE} are presented as a function of mass fraction. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions using also the mass fractions. The polynomial correlations describe the variation of viscosity with composition. A qualitative discussion on these quantities in terms of molecular interactions is reported.  相似文献   

5.
The density and surface tension of the pure ionic liquid n-butylpyridinium nitrate ([BuPy]NO3) were determined at temperature range from T = (293.15 to 338.15) K. The coefficient of thermal expansion, molecular volume and lattice energy of [BuPy]NO3 were calculated from the experimental values of density. The surface entropy and enthalpy of [BuPy]NO3 were investigated. The IL studied show much lower surface enthalpy and lattice energy in comparison with fused salts. The densities and surface tensions of binary mixtures of [BuPy]NO3 with water have been measured within the whole composition range at T = 298.15 K and atmospheric pressure. Excess molar volumes VE and surface tension deviations δγ were then deduced from the experimental results as well as partial molar volumes and excess partial molar volumes. Excess molar volumes have a negative deviation from ideal behavior and the surface tension deviations are negative over the whole compositions range. VE and δγ were correlated with suitable equation respectively.  相似文献   

6.
The density and surface tension for pure ionic liquid N-octyl-pyridinium nitrate were measured from (293.15 to 328.15) K. The coefficient of thermal expansion, molecular volume, standard entropies, and lattice energy were calculated from the experimental density values. The critical temperature, surface entropy, surface enthalpy, and enthalpy of vaporization were also studied from the experimental surface tension results. Density and surface tension were also determined for binary mixtures of (N-octyl-pyridinium nitrate + alcohol) (methanol, ethanol, and 1-butanol) systems over the whole composition range at 298.15 K and atmospheric pressure. Excess molar volumes and surface tension deviations for the binary systems have been calculated and were fitted to a Redlich–Kister equation to determine the fitting parameters and the root mean square deviations. The partial molar volume, excess partial molar volume, and apparent molar volume of the component IL and alcohol in the binary mixtures were also discussed.  相似文献   

7.
The density and surface tension of 1-ethyl-3-methylimidazolium l-lactate ([emim][l-lactate]) ionic liquid were determined from T = (283.15 to 333.15) K. The coefficients of thermal expansion were calculated from the experimental density results using an empirical correlation for T = (283.15 to 333.15) K. Molecular volume and standard entropies of the IL were calculated from the experimental density values. The surface properties of IL were investigated. The critical temperature and enthalpy of vaporization were also discussed. Density and surface tension have been measured over the whole composition range for {[emim][l-lactate] + water} binary systems at a temperature of 298.15 K and atmospheric pressure. Excess molar volumes VE and the surface tension deviations δγ have been determined.  相似文献   

8.
Densities, viscosities, and refractive indices of the ternary mixture consist of {2-methyl-2-butanol (1) + tetrahydrofuran (THF) (2) + propylamine (3)} at a temperature of 298.15 K and related binary mixtures were measured at temperatures of (288.15, 298.15, and 308.15) K at ambient pressure. Data were used to calculate the excess molar volumes and the deviations of the viscosity and refractive index. The Redlich–Kister and the Cibulka equations were used for correlating binary and ternary properties, respectively. The ERAS-model has been applied for describing the binary and ternary excess molar volumes and also Peng–Robinson–Stryjek–Vera (PRSV) equation of state (EOS) has been used to predict the binary and ternary excess molar volumes and viscosities.  相似文献   

9.
In this work, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and 0.1 MPa for the binary mixtures (cyclopentane and cyclohexane with ethanol, 1-propanol, and 1-butanol) at several temperatures (293.15, 298.15, 303.15) K along with the properties of the pure components. Excess molar volumes, molar isentropic compression, excess molar isentropic compression, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with primary alcohol (CHcy/-OH) have been determined for their application in the predictive UNIFAC-VISCO method.  相似文献   

10.
In this work, the physical properties, dynamic viscosities, densities, and speed of sound have been measured over the whole composition range and atmospheric pressure for the binary mixtures (methylcyclopentane with acetone, butanone, and 2-pentanone) at several temperatures T = (293.15, 298.15, and 303.15) K along with the properties of the pure components. Excess molar volumes, isentropic compressibility, deviations in isentropic compressibility and viscosity deviation for the binary systems at the above-mentioned temperatures were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures. The interaction parameters of cycloalkanes with ketones (CHcy/CO) have been determined for their application in the predictive UNIFAC-VISCO method.  相似文献   

11.
Experimental densities, speeds of sound, and refractive indices of the binary mixtures presenting azeotropes of (ethanol with hexane or heptane or 2-butanone) and (2-propanol with 2-butanone or ethylacetate or cyclohexane) were determined from T = (293.15 to 303.15) K. Excess molar volumes, changes of refractive index on mixing and deviations in isentropic compressibility for the above systems were calculated. A function of the mole fraction and temperature polynomial equation was used to fit these quantities. The standard deviations between experimental and calculated values are shown.  相似文献   

12.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

13.
Density and viscosity were determined for the binary mixtures containing the ionic liquid N-octylisoquinolinium bis{(trifluoromethyl)sulfonyl}imide ([C8iQuin][NTf2]) and 1-alcohol (1-butanol, 1-hexanol, and 2-phenylethanol) at five temperatures (298.15, 308.15, 318.15, 328.15, and 338.15) K and ambient pressure. The density and viscosity correlations for these systems were tested by an empirical second-order polynomial and by the Vogel–Fucher–Tammann equation. Excess molar volumes were described by the Redlich–Kister polynomial expansion. The density and viscosity variations with compositions were described by polynomials. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions. The surface tensions of pure ionic liquid and binary mixtures of [C8iQuin][NTf2] with 1-hexanol were measured at atmospheric pressure at three temperatures (298.15, 308.15, and 318.15) K. The surface tension deviations were calculated and correlated by the Redlich–Kister polynomial expansion. The surface thermodynamic functions such as surface entropy and enthalpy were derived from the temperature dependence of the surface tension values. The critical temperature, parachor, and speed of sound for pure ionic liquid were described. A qualitative analysis on these quantities in terms of molecular interactions is reported. The obtained results indicate that ionic liquid interactions with alcohols are strong dependent on the special trend of packing effects and hydrogen bonding of this ionic liquid with hydroxylic solvents. As previously observed, an increase by a 1-alcohol carbon chain length leads to lower interactions on mixing.  相似文献   

14.
Density and viscosity were determined for binary mixtures of {hyperbranched polymer, a fatty acid modified dendritic polymer Boltorn U3000 (B-U3000) + 1-alcohol (1-butanol, 1-hexanol, and 1-octanol)} at T = (298.15, 308.15, 318.15, 328.15, and 338.15) K and of {B-U3000 + tert-butyl-methylether (MTBE)} at T = (298.15, 308.15, and 318.15) K and ambient pressure. The temperature dependence of density and viscosity for these systems can be described by linear regression and by the Vogel–Fucher–Tammann equation, respectively. Excess volumes were discussed in a function of mass fractions. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions using also the mass fractions. The polynomial correlations describe the variation of viscosity with composition. A qualitative discussion on these quantities in terms of molecular interactions is reported.  相似文献   

15.
In the present work, density and viscosity of two binary mixtures of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) with 1-butyl-3-methylimidazolium acetate ([bmim][acetate]) are measured. The experiments were carried out at atmospheric pressure and at T = (293.15 to 343.15) K for density and from 293.15 K to 353.15 K for viscosity over the whole range of mole fraction. Using the density and viscosity results, several physical and thermodynamic properties such as excess molar volumes (VE), coefficients of thermal expansions (α), viscosity deviation (Δη),molar activation entropy (ΔS), molar activation enthalpy (ΔH) and molar activation Gibbs free energy (ΔG) for these binary mixtures are calculated.The experimental results of the density and viscosity for the pure systems as well as the binary systems show a decrease with increasing temperature as expected. The results of density measurements show that over all ranges of temperatures investigated the density of the pure components show the following trend: DEA > [bmim][acetate] > MDEA. Therefore, in the binary mixtures of the (MDEA + [bmim][acetate]), the density of the mixture reduces with decreasing concentration of the ionic liquid and for the (DEA + [bmim][acetate]) mixture the density of the blend enhances to reduce the concentration of the ionic liquid. Moreover, the calculated excess molar volumes show a positive deviation from ideality for the two binary mixtures. The behaviour of change of viscosity against concentration for the (MDEA + [bmim][acetate]) system is different from the (DEA + [bmim][acetate]) mixture so that for the first system the value of the viscosity rises with increasing [bmim][acetate] mole fraction, but in the second system there is a minimum viscosity point in the DEA-rich region.  相似文献   

16.
Physico-chemical properties viz., density, viscosity, and refractive index at temperatures = (298.15, 303.15, and 308.15) K and the speed of sound at T = 298.15 K are measured for the binary mixtures of methylcyclohexane with ethanol, propan1-ol, propan-2-ol, butan-1-ol, 2-methyl-1-propanol, and 3-methyl-1-butanol over the entire range of mixture composition. From these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. These results are fitted to the polynomial equation to derive the coefficients and standard errors. The experimental and calculated quantities are used to study the nature of mixing behaviours between the mixture components.  相似文献   

17.
In this work, density and viscosity have been determined for (polyethylene glycol dimethyl ether 250 + 1,2-propanediol, or 1,2-butanediol, or 1,2-pentanediol, or 1,2-hexanediol) binary systems over the whole concentration range at temperatures of (293.15, 303.15, 313.15, 323.15) K and atmospheric pressure. Experimental data of mixtures were used to calculate the excess molar volumes VE, and viscosity deviations Δη. These results were fitted by the Redlich–Kister polynomial relation to obtain the coefficients and standard deviations.  相似文献   

18.
Densities, viscosities, speed of sound, and IR spectroscopy of binary mixtures of tert-butyl acetate (TBA) with benzene, methylbenzene, and ethylbenzene have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, speed of sound, and IR spectroscopy; excess molar volumes VE, deviations in viscosity Δη, deviations in isentropic compressibility Δκs and stretching frequency ν have been calculated. The excess molar volumes and deviations in isentropic compressibility are positive for the binaries studied over the whole composition, while deviations in viscosities are negative for the binary mixtures. The excess molar volumes, deviations in viscosity, and deviations in isentropic compressibility have been fitted to the Redlich–Kister polynomial equation. The Jouyban–Acree model is used to correlate the experimental values of density, viscosity, and speed of sound.  相似文献   

19.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

20.
Experimental isothermal (vapour + liquid) equilibrium (VLE) data are reported for the binary mixture containing 1-butyl-3-methylimidazolium iodide ([bmim]I) + 1-butanol at three temperatures: (353.15, 363.15, and 373.15) K, in the range of 0 to 0.22 liquid mole fraction of [bmim]I. Additionally, refractive index measurements have been performed at three temperatures: (293.15, 298.15 and 308.15) K in the whole composition range. Densities, excess molar volumes, surface tensions and surface tension deviations of the binary mixture were predicted by Lorenz–Lorentz (nD-ρ) mixing rule. Dielectric permittivities and their deviations were evaluated by known equations. (Vapour + liquid) equilibrium data were correlated with Wilson thermodynamic model while refractive index data with the 3-parameters Redlich–Kister equation by means of maximum likelihood method. For the VLE data, the real vapour phase behaviour by virial equation of state was considered. The studied mixture presents S-shaped abatement from the ideality. Refractive index deviations, surface tension deviations and dielectric permittivity deviations are positive, while excess molar volumes are negative at all temperatures and on whole composition range. The VLE data may be used in separation processes design, and the thermophysical properties as key parameters in specific applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号