首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionic liquids (ILs) are used as entrainers in azeotropic systems such as water + ethanol, water + 2-propanol, and water + tetrahydrofuran (THF). Ionic liquids consisting of a cation and an anion has limitless combinations, thereby making experimentation expensive and time taking. For the prediction of the liquid phase nonidealities resulting from molecular interactions, “COnductor-like Screening MOdel for Real Solvents” (COSMO-RS) approach is used in this work for the screening of potential ionic liquids. Initially benchmarking has been done on 12 reported isobaric IL based ternary systems with an absolute average deviation of 4.63% in vapor phase mole fraction and 1.07% in temperature. After successful benchmarking, ternary vapor + liquid equilibria for the azeotropic mixture of (a) ethanol + water, (b) 2-propanol + water, and (c) THF + water with combinations involving 10 cations (imidazolium, pyridinium, quinolium) and 24 anions were predicted. The VLE prediction, which gave the relative volatility, showed that the imidazolium based ionic liquid were the best entrainer for the separation of the three systems at their azeotropic point. ILs with [MMIM] cation in combination with acetate [OAc], chloride [Cl], and bromide [Br] anion gave the highest relative volatility.  相似文献   

2.
On this paper, experimental (liquid + liquid) equilibrium (LLE) results are presented for systems composed of β-citronellol and aqueous 1-propanol or acetone. To evaluate the phase separation properties of β-citronellol in aqueous mixtures, LLE values for the ternary systems (water + 1-propanol + β-citronellol) and (water + acetone + β-citronellol) were determined with a tie-line method at T = (283.15, 298.15, and 313.15 ± 0.02) K and atmospheric pressure. The reliability of the experimental tie-lines was verified by the Hand and Bachman equations. Ternary phase diagrams, distribution ratios of 1-propanol and acetone in the mixtures are shown. The effect of the temperature on the ternary (liquid + liquid) equilibria was examined and discussed. The experimental LLE values were satisfactorily correlated by extended UNIQUAC and modified UNIQUAC models.  相似文献   

3.
(Vapour + liquid) equilibrium data in the three binary (2-propanol + 2,2,4-trimethylpentane), (2-propanol + 2,4-dimethyl-3-pentanone), (2,2,4-trimethylpentane + 2,4-dimethyl-3-pentanone) systems, and in the ternary (2-propanol + 2,2,4-trimethylpentane + 2,4-dimethyl-3-pentanone) system are reported. The data were measured isothermally at (330.00 and 340.00) K covering the pressure range (8 to 70) kPa. The binary (vapour + liquid) equilibrium data were correlated using the Wilson and NRTL equations by means of a robust algorithm for processing all isotherms together; resulting parameters were then used for calculation of phase behaviour in the ternary system and for subsequent comparison with experimental data. Azeotropic behaviour of the (2-propanol + 2,2,4-trimethylpentane) system was evaluated together with all available published data.  相似文献   

4.
Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model.  相似文献   

5.
In this paper, (liquid + liquid) equilibrium (LLE) data for the ternary systems (cyclohexane, or cyclooctane, or methylcyclohexane + ethylbenzene + 1-ethyl-3-methylimidazolium ethylsulfate) have been determined experimentally at T = 298.15 K and atmospheric pressure. The solubility curves and the tie-line compositions of the conjugate phases were obtained by means of density. The degree of consistency of the tie-lines was tested using the Othmer–Tobias equation, and the Non-Random Two-Liquid (NRTL) and the Universal Quasi-Chemical (UNIQUAC) models were used to correlate the phase equilibrium in the systems. Selectivity and solute distribution ratio were evaluated for the immiscible region.  相似文献   

6.
《Fluid Phase Equilibria》2005,235(1):58-63
Vapour–liquid equilibrium data in the two binary 2-propanol + 4-methyl-2-pentanone, and diisopropyl ether + 4-methyl-2-pentanone systems, and in the ternary 2-propanol + diisopropyl ether + 4-methyl-2-pentanone system are reported. The data were measured isothermally at 330.00 and 340.00 K covering the pressure range 12–100 kPa. The binary vapour–liquid equilibrium data were correlated using the Wilson, NRTL and Redlich–Kister equations; resulting parameters were then used for calculation of phase behaviour in the ternary system and for subsequent comparison with experimental data.  相似文献   

7.
(Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters.  相似文献   

8.
Experimental results are presented for the (liquid + liquid), (solid + liquid) and (solid + liquid + liquid) equilibria occurring in the downstream process of a typical example for the Biphasic Acid Scavenging Utilizing Ionic Liquids (BASIL)-processes. In a BASIL process an organic base is used to catalyze a chemical reaction and, at the same time, to scavenge an acid that is an undesired side product of that reaction. The particular example of a BASIL process treated here is the reaction of 1-butanol and acetylchloride to butylacetate and hydrochloric acid, where the acid is scavenged by the organic base 1-methyl imidazole (1-MIM) resulting in the ionic liquid 1-methyl imidazolium chloride. The reaction results in a two-phase system as butylacetate and the ionic liquid reveal a large liquid–liquid miscibility gap. The organic base has to be recovered. This is commonly achieved by treating the ionic liquid–rich liquid phase with an aqueous solution of sodium hydroxide (i.e., converting the ionic liquid to the organic base) and extracting the organic base by an appropriate organic solvent (e.g., 1-propanol). The work presented here deals in experimental work with the (liquid + liquid), (solid + liquid) and (solid + liquid + liquid) phase equilibria that are encountered in such extraction processes. Experimental results are reported for temperatures between about 298 K and 333 K: for the solubility of NaCl in several solvents (1-propanol, 1-MIM), (water + 1-MIM), (1-propanol + 1-MIM), (water + 1-propanol), and (water + 1-propanol + 1-MIM) and for the (liquid + liquid) equilibrium as well as for the (solid + liquid + liquid) equilibrium of the ternary system (NaCl + water + 1-propanol) and of the quaternary system (NaCl + water + 1-propanol + 1-MIM).  相似文献   

9.
(Liquid + liquid) equilibrium data for the quaternary systems (water + 2-propanol + 1-butanol + potassium bromide) and (water + 2-propanol + 1-butanol + magnesium chloride) were measured at T = 313.15 K and T = 353.15 K. The overall salt concentrations were 5 and 10 mass percent. Ternary (liquid + liquid) equilibrium data for the salt-free system (water + 2-propanol + 1-butanol) were also determined and found to be in good agreement with data from the literature. The NRTL model for the activity coefficient was used to correlate the data. New interaction parameters were estimated, using the Simplex minimization method and a concentration-based objective function. The results are very satisfactory, with root mean square deviations between experimental and calculated compositions of both phases being less than 0.5%.  相似文献   

10.
《Fluid Phase Equilibria》2006,239(2):183-187
Total pressure measurements are reported for the ternary system ‘di-isopropyl ether + 1-propanol + benzene’ and two of the binary systems involved ‘di-isopropyl ether + 1-propanol’ and ‘1-propanol + benzene’ at 313.15 K. Data reduction by Barker's method provides correlations for GE using the Margules equation for the binary systems and the Wohl expansion for the ternary system. Wilson, NRTL and UNIQUAC models have been applied successfully to both the binary and the ternary systems.  相似文献   

11.
《Fluid Phase Equilibria》2006,248(1):24-28
(Liquid–liquid) equilibrium data for the ternary systems [water + formic acid or acetic acid or propionic acid + cumene (2-phenylpropane, isopropylbenzene)] at 298.15 K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie-lines was determined through the Othmer–Tobias plots. Distribution coefficients and separation factors were evaluated for the immiscibility region. The tie-line data were compared with the results predicted by the UNIFAC method.  相似文献   

12.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

13.
Isothermal (vapour + liquid) equilibria (VLE) at 313.15 K have been measured for liquid 1-propanol + dibromomethane, or + bromochloromethane or + 1,2-dichloroethane or + 1-bromo-2-chloroethane mixtures.The VLE data were reduced using the Redlich–Kister equation taking into consideration the vapour phase imperfection in terms of the 2nd molar virial coefficients. The excess molar Gibbs free energies of all the studied mixtures are positive and ranging from 794 J · mol−1 for (1-propanol + bromochloromethane) and 1052 J · mol−1 for (1-propanol + 1-bromo-2-chloroethane), at x = 0.5. The experimental results are compared with modified UNIFAC predictions.  相似文献   

14.
(Solid/liquid + liquid) phase diagrams at ambient pressure have been determined for the hyperbranched polymer, Boltorn W3000 with alcohols (methanol, ethanol, 1-propanol, 1-hexanol, 1-decanol), or with ethers (tert-butyl methyl ether, tert-butyl ethyl ether), or with hydrocarbons (n-hexane, n-heptane, benzene, toluene) by a dynamic method from T = 240 K to the boiling temperature of the solvent. (Solid + liquid) phase equilibria with immiscibility in the liquid phase were detected for B-W3000 with the alcohols and aliphatic hydrocarbons. The upper critical solution temperatures, UCSTs, were measured for (B-W3000 + 1-hexanol and 1-decanol) systems. The experimental results of (solid + liquid) phase equilibria have been correlated using NRTL equation.  相似文献   

15.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

16.
(Liquid + liquid) equilibrium data for (water + ethanol + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range (298.2 to 313.2) K. A type 1 (liquid + liquid) phase diagram was obtained for this ternary system. The experimental tie-line data for this system were correlated with the UNIQUAC solution model. The values of the interaction parameters between each pair of components in the system were obtained for the UNIQUAC model with the experimental results. The root mean square deviation between the observed and calculated mole per cent was 1.70%. The mutual solubility of 2-ethyl-1-hexanol and water was also investigated by the addition of ethanol at different temperatures.  相似文献   

17.
In this study the phase equilibrium behaviors of the binary system (CO2 + lauric acid) and the ternary system (CO2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.  相似文献   

18.
Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane.  相似文献   

19.
Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa.The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask.The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems.The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model.  相似文献   

20.
Experimental tie-line results and phase diagrams were obtained for the ternary systems of {water + propionic acid + organic solvent (cyclohexane, toluene, and methylcyclohexane)} at T = 303.2 K and atmospheric pressure. The organic solvents were two cycloaliphatic hydrocarbons (i.e., cyclohexane and methylcyclohexane) and an aromatic hydrocarbon (toluene). The experimental tie-lines values were also compared with those calculated by the UNIQUAC and NRTL models. The consistency of the values of the experimental tie-lines was determined through the Othmer–Tobias and Hands plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients and separation factors. The Kamlet LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems. The LSER model values showed a good regression to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号