首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superparamagnetic nanoparticles of modified thioglycolic acid (γ‐Fe2O3@SiO2‐SCH2CO2H) represent a new, efficient and green catalyst for the one‐pot synthesis of novel spiro[benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazine] derivatives via domino Knoevenagel–Michael–cyclization reaction of 2‐hydroxynaphthalene‐1,4‐dione, benzene‐1,2‐diamines, ninhydrin and isatin. This novel magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant loss in its activity. The catalyst was fully characterized using various techniques. This procedure was also applied successfully for the synthesis of benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazines.  相似文献   

2.
In this study, new Fe3O4@gly@thiophen@Cu(NO3)2 magnetic nanoparticles were synthesized. The final product was used as an efficient and novel magnetic nanocatalyst for synthesizing new derivatives of thiazolo[3,2-a] chromeno[4,3-d]pyrimidine-6(7H) in a short time and with higher efficiency. In the synthesis of Fe3O4@gly@thiophen@Cu(NO3)2 magnetic nanoparticles, the use of glycine proved an inexpensive and readily available coating for Fe3O4 than previously reported materials, and the structure was confirmed using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive x-ray (EDX) spectroscopy, EDX mapping, Fourier-transform infrared spectroscopy, thermogravimetric analysis/derivative thermogravimetry, and vibrating sample magnetometry. The biological properties of magnetic nanoparticles were evaluated, and they exhibited acceptable antifungal and antibacterial properties in terms of minimum inhibitory concentration, minimum fungicidal concentration, and minimum bactericidal concentration.  相似文献   

3.
A simple and efficient procedure has been developed for the synthesis of biologically relevant 2‐substituted benzimidazoles through a one‐pot condensation of o‐phenylenediamines with aryl aldehydes catalysed by iron oxide magnetic nanoparticles (Fe3O4 MNPs) in short reaction times with excellent yields. In the present study, Fe3O4 MNPs synthesized in a green manner using aqueous extract of white tea (Camelia sinensis) (Wt‐Fe3O4 MNPs) were applied as a magnetically separable heterogeneous nanocatalyst to synthesize 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole which has potential application in pharmacology and biological systems. Fourier transform infrared and NMR spectroscopies were used to characterize the 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole. In vitro cytotoxicity studies on MOLT‐4 cells showed a dose‐dependent toxicity with non‐toxic effect of 2‐(4‐chlorophenyl)‐1H–benzo[d]imidazole, up to a concentration of 0.147 µM. The green synthesized Wt‐Fe3O4 MNPs as recyclable nanocatalyst could be used for further research on the synthesis of therapeutic materials, particularly in nanomedicine, to assist in the treatment of cancer.  相似文献   

4.
Copper supported on 2-(1H-benzo[d]imidazol-2-yl)aniline (BIA)-functionalized Fe3O4 nanoparticles (Cu-BIA-Si-Fe3O4) as a novel magnetic catalyst was designed and used for the synthesis of new products via Ullmann and Suzuki cross-coupling reactions. The Ullmann reaction was performed by mixing arylboronic acid with aniline derivatives in dimethylsulfoxide solvent. Also, diaryls were synthesized via Suzuki C–C reactions between aryl halides and phenylboronic acid in the same solvent. The prepared materials and catalyst were characterized with various analytical techniques. The Cu-BIA-Si-Fe3O4 catalyst demonstrated catalytic efficiency with good to excellent yields for both types of reactions in comparison with commercial palladium catalysts. Also, the catalyst could be recovered by a simple filtration and retained its activity even after several cycles.  相似文献   

5.
A novel chiral magnetic nanocatalyst was prepared by the surface modification of Fe3O4 magnetic nanoparticles (MNPs) with a chloropropylsilane and further by arginine to form Fe3O4@propylsilan‐arginine (Fe3O4@PS‐Arg). After the structural confirmation of Fe3O4@PS‐Arg synthesized MNPs by Fourier transform‐infrared, X‐ray diffraction, field emission‐scanning electron microscopy, transmission electron microscopy, vibrating‐sample magnetometry and thermogravimetric analyses, their catalytic activity was evaluated for one‐pot enantioselective synthesis of 3‐amino‐1‐aryl‐1H‐benzo[f]chromene‐2‐carbonitrile derivatives. The results showed that in the presence of 0.07 g Fe3O4@PS‐Arg nanocatalyst and ethanol as solvent, the best reaction yield (96%) was obtained in the least time (5 min). Easy operation, reusability and stability, short reaction time, high reaction yields and good enantioselectivity are the major advantages of the newly synthesized nanocatalyst. Also, this study provides a novel strategy for further research and investigation on the synthesis of new reusable enantioselective catalysts and chiral compounds.  相似文献   

6.
A magnetic nanocomposite based on graphene oxide was prepared. Fe3O4 nanoparticles were loaded on graphene oxide sheets and GO-Fe3O4 was covered by aniline-pyrrole copolymer to afford poly(Py-co-Ani)@GO-Fe3O4. This nanocomposite was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray diffraction, thermogravimetric analysis, and X-ray photoelectron spectroscopy techniques, and its catalytic activity was evaluated in the multicomponent synthesis of 2′-aminospiro[indeno[1,2-b]quinoxaline-11,4′-[4'H]pyran]-3′-carbonitrile and 2′-aminospiro[indeno-2,4′-[4'H]pyran]-3′-carbonitrile derivatives. This magnetically separable catalyst is heterogeneous noncorrosive, highly efficient, and reusable.  相似文献   

7.
Fe3O4-diazabicyclo[2.2.2]octane (Fe3O4-DABCO) magnetic nanoparticles (MNPs) catalyst was readily prepared from inexpensive starting materials in aqueous media which catalyzed the synthesis of coumarin. FTIR spectroscopy, X-ray diffraction, transmission electron micrographs were employed to characterize the properties of the synthesized Fe3O4-DABCO MNPs. High catalytic activity and ease of recovery from the reaction mixture using external magnet, and several reuse times without significant losses in performance are additional eco-friendly attributes of this catalytic system.  相似文献   

8.
A simple and practical strategy for the synthesis of a novel nano‐Fe3O4‐supported organocatalyst system based on 3,4‐dihydroxypyridine (Fe3O4/Py) has been developed. The prepared catalyst was characterized using Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and energy‐dispersive X‐ray analysis. Accordingly, the Fe3O4/Py nanoparticles show a superparamagnetic property with a saturation magnetization of 61 emu g?1, indicating potential application in magnetic separation technology. Our experimental results reveal that the pyridine‐functionalized Fe3O4 nanoparticles are an efficient base catalyst for the domino condensation of various aromatic aldehydes, Meldrum's acid and 5‐methylpyrazol‐3‐amine under very mild reaction condition and in the presence of ethanol solvent. Moreover, the synthesized catalyst was used for one‐pot, three‐component condensation of aromatic aldehydes with barbituric acid and malononitrile to produce 7‐amino‐2,4‐dioxo‐5‐phenyl‐2,3,4,5‐tetrahydro‐1H‐pyrano[2,3‐d]pyrimidine‐6‐carbonitriles. All reactions are completed in short times and all products are obtained in good to excellent yields. Also, notably, the catalyst was reused five times without significant degradation in catalytic activity and performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, synthesis of pyrido[2,1-a]isoquinolines and pyrido[1,2-a]quinolins in excellent yield using multicomponent reaction of phthalaldehyde, methyl amine, methyl malonyl chloride, alkyl bromides, and triphenylphosphine in the presence of catalytic amount of Fe3O4-MNPs with aqueous sodium hydroxide at 80°C was investigated. The reduction of ferric chloride solution with Clover Leaf water extract caused to synthesis of magnetic iron oxide nanoparticles (Fe3O4-MNPs) as a green method. As well, antioxidant activity was studied for the some newly synthesized compounds such as 6a , 6c , 9b , and 9c using the DPPH radical trapping and reducing of ferric ion experiments and comparing results with synthetic antioxidants (TBHQ and BHT). As a result, compounds 6a , 6c , 9b , and 9c show good DPPH radical trapping and excellent reducing strength of ferric ion.  相似文献   

10.
An efficient, one-pot quantitative procedure for preparation of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives from four-component condensation reaction of hydrazine monohydrate, phthalic anhydride, malononitrile or ethyl cyanoacetate, and aromatic aldehydes in the presence of magnetic Fe3O4 nanoparticles coated by (3-aminopropyl)-triethoxysilane as catalyst under mild, ambient, and solvent-free conditions is described. Simple procedure, high yield, short reaction time, and environmentally benign method are advantages of this protocol. The magnetic Fe3O4 nanoparticles coated by (3-aminopropyl)-triethoxysilane can be recovered and reused several times without loss of activity.  相似文献   

11.
In this study, Pd based on 2-Aminopyrimidine and 1H-benzo[d]imidazol-2-amine functionalized Fe3O4 magnetic nanoparticles [(Pd-APM-PSi-Fe3O4) and (Pd-BIA-PSi-Fe3O4)] was designed and used for the synthesis of di aryl ether by Ulmann cross-coupling reactions. Ulmann reaction performed with mixing of the arylhalides and phenol derivatives in DMF solvent. The prepared catalysts were characterized with various analytical techniques such as FT-IR, XRD, TGA, SEM, TEM, EDX, ICP and VSM. Pd-APM-PSi-Fe3O4 and Pd-BIA-PSi-Fe3O4 catalysts demonstrated good to excellent yields catalytic efficiency for Ulmann reactions in comparison with to commercial palladium catalysts. The catalyst is easily recycled and reused without loss of the catalytic activity. The combined merits of reusable catalyst conditions make the condensation with safe operation, no leaching of pd into environment, low pollution, rapid access to products and simple workup. Also, these novel magnetic nanocatalysts are superior to the industry standard Pd in every relevant aspect. They feature a way higher initial activity, a much more convenient separation, better recycling, and less contamination of the products. Last but not least, they can be very easily prepared from commercially available Fe3O4 nanoparticles using standard laboratory equipment.  相似文献   

12.
Nanomagnetic bisethylferrocene‐containing ionic liquid supported on silica‐coated iron oxide (Fe3O4@SiO2@Im‐bisethylFc [HC2O4]) as a novel catalyst was designed and synthesized. The described catalyst was recycled and used without change in the time and efficiency of the condensation reaction. The Fourier transform‐infrared spectroscopy (FT‐IR), scanning electron microscopy images, X‐ray diffraction patterns, energy‐dispersive X‐ray spectroscopy, transmission electron microscope and vibrating‐sample magnetometer results confirmed the formation of Fe3O4@SiO2@Im‐bisethylFc [HC2O4] magnetic nanoparticle. The novel bis‐coumarin derivatives were identified by 1H‐NMR, 13C‐NMR, FT‐IR and CHNS analysis.  相似文献   

13.
In this work, a series of eight new spiro[3,4′]1,3-dihydro-2H-indol-2-one-2′-amino-4′,6′,7′,8′-tetrahydro-2′,5’(1’H,3’H)-quinazoline-diones were successfully synthesized through a three-component reaction of 1H-indole-2,3-diones (isatins), guanidine nitrate, and 1,3-cyclohexanediones, by use of Kit-6 mesoporous silica coated Fe3O4 nanoparticles (Fe3O4@SiO2@KIT-6) as a highly efficient magnetically separable nanocatalyst in aqueous media at 60°C. Several notable features of thiseco-friendly protocol are high yields of products, short reaction times, operational simplicity, and the use of easily available and recyclable catalyst.  相似文献   

14.
In this research, green procedure was employed for biosynthesis of magnetic nanoparticles of iron oxide (Fe3O4‐MNPs) by reduction of ferric chloride solution with Orange peel water extract. Also, dihydro‐2H‐cyclopenta[d][1,3]oxazole was generated through multicomponent reaction of 1,3‐oxazole‐2(3H)‐thione, dialkyl acetylenedicarboxylates, α‐haloketones, and Fe3O4‐MNPs as catalyst at ambient temperature in good yield. Initially, 1,3‐oxazole‐2(3H)‐thione derivatives as one of the precursors are produced through the reaction of alkyl bromides, isothiocyanate, sodium hydride, and Fe3O4‐MNPs as catalyst water at ambient temperature in 83–95% yields. Also, diphenyl‐picrylhydrazine radical trapping and ferric reduction activity potential assays are used for evaluation of antioxidant activity of some synthesized compounds. Among investigated compounds, 4b has good power for radical trapping activity and 4d has good reduction power to butylated hydroxytoluene and 2‐tert‐butylhydroquinone.  相似文献   

15.
In this research, the main emphasis has been focused on the preparation of a novel Fe3O4-supported propane-1-sulfonic acid-grafted graphene oxide quantum dots (Fe3O4@GOQD-O-(propane-1-sulfonic acid)) that it was readily synthesized via a five-step procedure as a hitherto unreported magnetic nanocatalyst. This newly prepared Fe3O4@GOQD-O-(propane-1-sulfonic acid) nanocomposite was structurally well-established by different analytical techniques including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis (TGA), field emission gun-scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) analyses. The high catalytic performance of this nanocomposite was exhibited in one-pot synthesis of dihydropyrano[2,3-c]pyrazole and 4H-chromene derivatives under mild conditions. Low reaction times, excellent yields of the products, benignity of the catalyst, easy reaction work-up and magnetic recyclability of the catalyst are the main advantages of the present protocol. Also, our research indicated that the Fe3O4@GOQD-O-(propane-1-sulfonic acid) could be reused up to five times without considerable loss of catalytic activity.  相似文献   

16.
An SO3H‐functionalized nano‐MGO‐D‐NH2 catalyst has been prepared by multi‐functionalization of a magnetic graphene oxide (GO) nanohybrid and evaluated in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3‐d]pyrimidinone derivatives. The GO/Fe3O4 (MGO) hybrid was prepared via an improved Hummers method followed by the covalent attachment of 1,4‐butanesultone with the amino group of the as‐prepared polyamidoamine‐functionalized MGO (MGO‐D‐NH2) to give double‐functionalized magnetic nanoparticles as the catalyst. The prepared nanoparticles were characterized to confirm their synthesis and to precisely determine their physicochemical properties. In summary, the prepared catalyst showed marked recyclability and catalytic performance in terms of reaction time and yield of products. The results of this study are hoped to aid the development of a new class of heterogeneous catalysts to show high performance and as excellent candidates for industrial applications.  相似文献   

17.
Fe3O4 magnetic nanoparticles functionalized with 5,10‐dihydropyrido[2,3‐b]quinoxaline‐7,8‐diol were synthesized as was their complex with copper as a novel nanomagnetic iron oxide catalyst via a simple and green method, and characterized using various techniques. The capability of the catalyst was evaluated in the one‐pot three‐component synthesis of different tetrazoles, which showed very good results. Mild reaction conditions, good reusability and simple magnetic work‐up make this methodology interesting for the efficient synthesis of tetrazoles.  相似文献   

18.
In this study, silica-coated Fe3O4 nanoparticle@silylpropyl triethylammonium polyoxometalate catalyst was fabricated and characterized using atomic absorption, inductively coupled plasma optical emission spectrometry, elemental analysis, thermogravimetric analysis, Fourier-transform infrared, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometry analyses. The activity of this catalyst was examined in the synthesis of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones. The bonding of the polyoxometalate to the surface of the nanoparticles exhibited excellent catalytic activity in this synthesis. Besides, the catalyst showed good reusability and recovery from the reaction mixture. Tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones were synthesized in high yields in the presence of inexpensive supported solid acid catalysts under classical heating conditions.  相似文献   

19.
Thiourea dioxide was immobilized on γ‐Fe2O3@Cu3Al‐LDH magnetic nanoparticles to prepare the γ‐Fe2O3@Cu3Al‐LDH‐TUD MNPs. The structure and properties of these magnetic nanoparticles were established by FT‐IR, EDX, SEM, XRD, and hystogram of particle size analytical methods. The results obtained from these analytical methods confirmed the successful immobilization of the thiourea dioxide onto the magnetic support. The synthesized magnetic nanoparticles (MNPs) exhibited high catalytic activity in one‐pot three‐component reactions under mild and solvent‐free conditions for the synthesis of diverse ranges of dihydropyrano[3,2‐c]pyrazoles and dihydropyrano[3,2‐c]chromens. All the reactions proceeded smoothly to furnish the respective products in excellent yields. Simple isolation of the products, avoidance of harmful organic solvents, versatility of the catalyst and its easy magnetic separation and reusability with no significant loss of activity are the main advantages of the present method.  相似文献   

20.
A novel magnetic hybrid system containing nano‐magnetic Fe2O3 hollow spheres, silica shell, [pmim]Cl ionic liquid and silver nanoparticles was synthesized and characterized. The silver nanoparticles were prepared via biosynthesis using Achillea millefolium flower as reducing and stabilizing agent. The hybrid system was successfully used as an efficient and reusable catalyst for promoting green ultrasonic‐assisted A3 and KA2 coupling reactions as well as benzo[b]furan synthesis. It was found that decoration of the magnetic core with non‐magnetic moieties decreased the maximum saturation magnetization. However, the catalyst was still superparamagnetic and could be simply separated from the reaction mixture using an external magnet. The heterogeneous nature of the catalyst was also confirmed by studying its reusability and stability and the leaching of silver. Use of aqueous media, high yields, short reaction times, broad substrate tolerance and low required amount of catalyst are the merits of this protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号