首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Benzo[1,2,3]trichalcogenoles with two bromine atoms on the benzene ring, 5,6-dibromo-4,7-diethylbenzo[1,2,3]trichalcogenoles (1a) and (1b) (chalcogen: 1a = S; 1b = Se), were first prepared by treating 2,3,5,6-tetrabromo-1,4-diethylbenzene (TBDEB) with elemental sulfur or amorphous selenium in DBU at 140 degrees C (for 1a) and 100 degrees C (for 1b) for 24 h. The structures of 1a and 1b were verified by NMR spectroscopy, mass spectrometry, and elemental analysis. X-ray crystallographic analysis ultimately showed that the substitution reactions of TBDEB proceeded at the two adjacent bromine atoms. To apply 1a and 1b to construction of phthalocyanine derivatives with sulfur or selenium functional groups, 4,5-bis(benzylchalcogeno)-3,6-diethylphthalonitriles (5a) and (5b) as key intermediates were prepared by way of introduction of alkyl groups (2-cyanoethyl or 4-nitrophenethyl groups) on two chalcogen atoms, substitution of two bromine atoms with nitrile groups, and subsequent exchange of alkyl groups with benzyl groups. Compound 5a was treated with lithium in n-pentanol at 100 degrees C for 1 h to produce 2,3,9,10,16,17,23,24-octakis(benzylthio)-1,4,8,11,15,18,22,25-octaethylphthalocyanine (6a). A similar treatment of 5b in n-hexanol at 100 degrees C for 2 h gave phthalocyanine 6b. The structures of 6a and 6b were determined by (1)H NMR spectroscopy and MALDI-TOFMS. X-ray crystallographic analysis of 6a was also performed. The Q-band absorptions (lambda(max)) for 6a and 6b in UV-vis spectra were observed at 755 nm (log epsilon = 5.1) and 757 nm (log epsilon = 5.1), respectively, and their electrochemical properties were verified by cyclic voltammetry in dichloromethane with Ag/AgNO(3) as a reference electrode. Compounds 6a and 6b were further treated with lithium in THF/NH(3) at -78 degrees C and then with dibutyltin dichloride to produce phthalocyanine derivatives 8a and 8b with four dichalcogenastannole rings by way of octachalcogenate phthalocyanines 7a and 7b.  相似文献   

2.
3,6‐Diethylphthalonitrile ( 3 ) with a tetrathiafulvalene (TTF) unit at 4,5‐positions was prepared from 4,5‐xylylenedithio‐3,6‐diethylphthalonitrile ( 1a ) via elimination of the xylylene group, connection of a carbonyl group to benzenedithiolate generated, and condensation of 4,5‐bis(methylthio)‐1,3‐dithiole‐2‐thione with benzo‐1,3‐dithiole‐2‐one ( 2‐O ) produced. A 1:1 mixture of phthalonitrile ( 3 ) and 4,5‐bis(benzylthio)‐3,6‐diethylphthalonitrile ( 1b ) was treated with lithium in n‐hexanol at 120°C to produce hexakis (benzylthio)mono(tetrathiafulvaleno)phthalocyanine ( 5 ), tetrakis(benzylthio)bis(tetrathiafulvaleno)phthalocyanine ( 6 ), and bis(benzylthio)tris(tetrathiafulvaleno)phthalocyanine ( 7 ). The structures of 5 , 6 , and 7 were determined by 1H NMR, FAB MS, MALDI‐TOF MS (matrix assisted laser desorption ionization time‐of‐flight mass spectrometry), and UV‐‐vis spectroscopy. Compound 6 is a mixture of trans and cis isomers ( 6‐ trans and 6‐ cis ). The UV‐‐vis spectrum of 5 measured in chloroform changed by addition of trifluoroacetic acid (TFA). The Q band absorption at λmax = 755 nm (chloroform) decreased in intensity and resulted in a new absorption at λmax = 740 nm (chloroform/TFA). The electrochemical properties of 5 , 6 , and 7 were determined by cyclic voltammetry using Ag/AgNO3 as a reference electrode. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:605–611, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20694  相似文献   

3.
The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) ( 4 ), copper (II) ( 5 ), nickel (II) ( 6 ) and zinc(II) ( 7 ) phthalocyanine derivatives. These novel compounds were characterized by elemental analysis,1H,13C NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallo-phthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO)1H and13C NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6–31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.  相似文献   

4.
Three 1,8,15,22-tetrasubstituted phthalocyaninato nickel complexes Ni[Pc(alpha-OR)(4)] [H(2)Pc(alpha-OC(5)H(11))(4) = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine; H(2)Pc(alpha-OC(7)H(15))(4) = 1,8,15,22-tetrakis(2,4-dimethyl-3-pentyloxy)phthalocyanine; H(2)Pc(alpha-OC(10)H(7))(4) = 1,8,15,22-tetrakis(2-naphthyloxy)phthalocyanine] (1-3) have been prepared by treating the corresponding metal-free phthalocyanines H(2)Pc(alpha-OR)(4) with Ni(acac)(2)2H(2)O in refluxing n-pentanol. Structures of the Langmuir monolayers of these compounds at different temperature have been investigated. Compound 1 formed nano-ring structures with the outer diameter of 70-150 nm and inner diameter of 50 nm at 25.0 degrees C while 2 and 3 formed round particles. This difference can be ascribed to the different substituents at alpha position. The morphologies of the aggregates of 1 in monolayers have been found to change with temperature. Decreasing in temperature induced the formation of regular quadrate crystals. UV-vis absorption spectra revealed strong intermolecular interactions in the nano-ring aggregates. Polarized UV-vis absorption spectra suggest a titled orientation with respect to the surface of substrate for phthalocyanine macrocycles in the nano-ring aggregates.  相似文献   

5.
Ligand-oxidized annulated dinuclear phthalocyanine zinc(II) and lithium(I) complexes absorbing in the NIR region (lambda=1000-2200 nm) with high extinction coefficients are described. Analogous mononuclear Pc complexes were used for comparison. The oxidized Pcs were characterized in solution by electronic absorption, EPR and NMR spectra. The NIR transitions were explained by using MO diagrams calculated semiempirically. The reversible oxidation behavior of the phthalocyanine complexes was also estimated by cyclic voltammetry. These new extremely long wavelength absorbing phthalocyanines are interesting as materials with new electronic properties.  相似文献   

6.
In this study, novel unsymmetrical mono- and di-substituted metal free and metallo phthalocyanines containing peripheral naringeninoxy moieties have been prepared. The naringenin-substituted phthalonitrile was synthesized from 4-nitrophthalonitrile and (±)naringenin in dimethylsulfoxide. Preparation of unsymmetrical mono- and di-substituted phthalocyanines, 2-naringenin-7-O-phthalocyaninatozinc, 2,9-bis-naringenin-7-O-phthalocyaninatozinc, 2,9-bis-naringenin-7-O-phthalocyaninatocobalt and 2,9-bis-naringenin-7-O-phthalocyanine was performed at 120-140 °C using the corresponding phthalonitrile in the presence of N,N-dimethylethanolamine (DMAE), ZnCl2, CoCl2 and LiCl, respectively. Synthesized new phthalocyanine compounds have been characterized by elemental analysis and 1H NMR, 13C NMR, FT-IR, MS and UV-vis spectroscopy. These are the first known examples of flavonoid-substituted phthalocyanines.  相似文献   

7.
Chiral side chains have been incorporated onto the non-periphery moiety of phthalocyanine ring, resulting in a pair of chiral phthalocyanines, (D)-and (L)-1,8,15, 22-tetrakis(2-isopropyl-5-methylcyclohexoxyl)phthalocyanine.  相似文献   

8.
Phthalocyanines with four biphenyl-malonic ester groups on the periphery were synthesized by cyclotetramerization of 4-(1,1-dicarbethoxy-2-(4-biphenyl)-ethyl)-phthalonitrile. The new compounds were characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, UV–Vis, and MASS spectral data. Electrochemical behaviors of novel Co(II), Cu(II), and Pd(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry, and applied potential chronocoulometry techniques. While Cu(II) and Pd(II) phthalocyanines give up to four common phthalocyanine ring reductions, Co(II) phthalocyanine gave two ligand-centered and two metal-centered redox processes. HOMO–LUMO gap of the complexes are comparable with the reported MPc papers.  相似文献   

9.
4-[2-(Phenylthio)ethoxy]phthalonitrile 3 was synthesized by nucleophilic displacement of nitro group in 4-nitrophthalonitrile with 2-(phenylthio)ethanol 1. The metal-free phthalocyanine 4 was prepared by the reaction of a dinitrile monomer with 2-(dimethylamino)ethanol. Ni(II), Co(II), Cu(I) phthalocyanines 5, 7, 8 were prepared by reaction of the dinitrile compound with the chlorides of Ni(II), Co(II), Cu(I) in DMAE. Zn(II) phthalocyanine 6, was prepared by reaction of the dinitrile compound with the acetates of Zn(II) in DMAE. Electrochemical behaviours of novel metal-free, Co(II) and Zn(II) phthalocyanines were investigated by cyclic voltammetry, potential differential pulse voltammetry techniques. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

10.
Metal(II) tetranitro phthalocyanines of cobalt, nickel and copper are synthesized in pure state by a novel modified method. The complexes are characterized using elemental, electronic and IR spectral studies. Pure metal(II) tetra-amino phthalocyanines of cobalt, nickel and copper are synthesized by reducing the nitro groups of the above complexes using sodium sulphide. These complexes are also characterized by elemental, electronic, IR spectral and magnetic susceptibility measurements. The nature of the electrical conductivities of the above three metal(II) tetra-amino phthalocyanine derivatives are studied in the temperature range 303-473 K and the data are presented. Among the effect of various substituent groups on the electrical conducting property of phthalocyanine, amine group substituent on the peripheral benzene ring of the phthalocyanine molecule has been found to increase electrical conductivity to a greatest extent. These complexes showed about 105-106 times higher electrical conductivities compared to their parent phthalocyanine compounds.  相似文献   

11.
Metallo-phthalocyanines bearing four bis(indol-3-yl)methane groups were successfully prepared by reaction of the corresponding phthalonitriles with anhydrous metal salts [Zn(CH3COO)2, NiCl2 and CoCl2] in the presence of a catalytic amount of DBU in 2-(dimethylamino)ethanol. The metal-free phthalocyanine was obtained by treating a mixture of the phthalonitrile derivative in similar conditions but in the absence of a metal salt. All of these phthalocyanines are soluble in DMSO, DMF, and pyridine. The products were characterized by IR, NMR, and UV-vis spectroscopy, MALDI-TOF-MS, and thermogravimetric analysis. The aggregation properties of the phthalocyanines were investigated at different concentrations in DMSO. All the phthalocyanines showed monomeric behavior in solution.  相似文献   

12.
The phthalonitrile derivative chosen for the synthesis of substituted phthalocyanines [M: 2H, Zn(II), Co(II)] with four chloro and four phenyloxyacetic acid substituents on the periphery is 4-chloro-5-(4-phenyloxyacetic acid)phthalonitrile. The sodium salt of carboxyl substituted zinc phthalocyanine is good soluble in water. Further reactions of zinc and cobalt phthalocyanines bearing phenyloxyacetic acid with thionylchloride gave the corresponding acylchlorides. This functional group reacted with hydroxymethylferrocene in dry DMF to obtain ferrocenyl substituted phthalocyanines. Also chloro substituent in new phthalonitrile was substituted with hexylsulfanyl substituent and its cyclotetramerization in the presence of Zn(AcO)2·2H2O and 2-(dimethylamino)ethanol resulted with zinc phthalocyanine. The compounds have been characterized by elemental analysis, MALDI-TOF mass, FT-IR, 1H NMR, UV-Vis and fluorescence data. Aggregations properties of phthalocyanines were investigated at different concentrations in tetrahydrofuran, dimethylformamide, dimethylsulfoxide, water, and water/ethanol mixture. Also fluorescence spectral properties are reported.  相似文献   

13.
Preparation and characterization of tetrasubstituted zinc(II) phthalocyanines in which sulfur is not linked to the macrocycle are reported herein for the first time. Thioacetic acid S-[3-(3,4-dicyano-phenoxy)-propyl]ester (4) was synthesized in 55% yield from 4-nitrophthalonitrile and thioacetic acid S-(3-hydroxy-propyl)ester (3). Tetrasusbtituted thiol-derivatized zinc(II) phthalocyanine 5 was obtained from 4 and zinc acetate in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene in butanol. Treatment of 5 with sodium methoxide afforded phthalocyanine 6.  相似文献   

14.
This work reports on the synthesis, characterization and photophysical studies of phthalocyanine-gold nanoparticle conjugates. The phthalocyanine complexes are: tris-(5-trifluoromethyl-2-mercaptopyridine)-2-(carboxy)phthalocyanine (3), 2,9,17,23-tetrakis-[(1, 6-hexanedithiol) phthalocyaninato]zinc(II) (8) and [8,15,22-tris-(naptho)-2(amidoethanethiol) phthalocyanato] zinc(II)(10). The gold nanoparticles were characterized using transmission electron microscopy, X-ray diffraction, atomic force microscopy and UV-vis spectroscopy where the size was confirmed to be ~5 nm. The phthalocyanine Au nanoparticle conjugates showed lower fluorescence quantum yield values with similar fluorescence lifetimes compared to the free phthalocyanines. The Au nanoparticle conjugates of 3 and 10 also showed higher triplet quantum yields of 0.69 to 0.71, respectively. A lower triplet quantum yield was obtained for the conjugate compared to free phthalocyanine for complex 8. The triplet lifetimes ranged from 70 to 92 μs for the conjugates and from 110 to 304 μs for unbound Pc complexes.  相似文献   

15.
The syntheses of 3,4- and 4,5-diiodophthalonitriles are described. Coupling of the latter compound with Pd(PPh(3))(2)Cl(2) and 1-octyne, 1-heptyne, 1-hexyne, 1-pentyne, and 3,3-dimethyl-1-butyne gave a series of 4,5-dialkynylphthalonitriles. Hydrogenation of 4,5-bis(1-pentynyl)phthalonitrile and 4,5-bis(3,3-dimethyl-1-butynyl)phthalonitrile gave 4,5-dipentylphthalonitrile and 4,5-bis(3,3-dimethylbutyl)phthalonitriles. Condensation of the dialkynylphthalonitriles with lithium 1-pentoxide in 1-pentanol gave 2,3,9,10,16,17,23,24-octaalkynylphthalocyanines, while intervention of the intermediate dilithium phthalocyanines with zinc acetate gave the related zinc(II) phthalocyanines. (1)H NMR spectroscopy of these octaalkynylphthalocyanines exhibited large chemical shifts (1-2 ppm) of the internal and aromatic protons at concentrations ranging from 10(-)(2) to 10(-)(5) M and at temperatures from 27 to 147 degrees C. The effects of aggregation phenomena are discussed. The importance of reporting concentration and temperature values for NMR spectra of phthalocyanines is stressed.  相似文献   

16.
Abstract— The photodynamic therapy (PDT) efficiency of five phthalocyanines, chloroaluminum phthalocyanine (AlPc), dichlorosilicon phthalocyanine (SiPc), bis (tri- n -hexylsi-loxy)silicon phthalocyanine (PcHEX), bis (triphenyl-siloxy)silicon phthalocyanine (PcPHE) and nickel phthalocyanine (NiPc), was assessed on two leukemic cell lines TF-1 and erythroieukemic and B lymphoblastic cell lines, Daudi, respectively. AlPc showed the best photocytotox-icity leading to 0.008 surviving fraction at 2 × 10−9 M for TF-1 and 4 × 10−9 M for Daudi. At 5 × 10−7 M , SiPc and PcHEX induced a significant photokilling, whereas NiPc and PcPHE were inactive. Laser flash photolysis and photoredox properties of the phthalocyanines were investigated to try to relate these parameters with the biological effects. AlPc showed the longest triplet lifetime: 484 fis in dimethyl sulfoxide/H2O. This value was increased up to 820 u.s when AlPc was complexed with human serum albumin used as a membrane model. Such an enhancement was not observed with the silicon phthalocyanines. Upon irradiation, all the phthalocyanines generated singlet oxygen with 0.29–0.37 quantum yield values. The reduction potentials of the excited states obtained from measurement in the ground state and energy of the excited triplets show that AlPc is the best electron acceptor. The in vitro photocytotoxicity observed and the measured parameters are in agreement with a key role of electron transfer in PDT assays involving these phthalocyanines.  相似文献   

17.
A remetalation (a capping group exchange) reaction of the boronantimony-capped iron(II) clathrochelates with zirconium and hafnium(IV) phthalocyanines in CH2Cl2/CH3OH medium afforded the hybrid phthalocyaninoclathrochelates in a practically quantitative yield. The complexes obtained have been characterized both on the basis of elemental analysis, PD mass spectrometry, IR, UV-vis, 57Fe M?ssbauer, and NMR spectroscopies, and crystallographically. An encapsulated iron(II) ion in an intermediate between a trigonal-prismatic and a trigonal-antiprismatic environment of six nitrogen atoms of the macrobicyclic ligand was found to be in a low-spin state. The cyclic voltammograms show irreversible oxidation and reduction waves assignable to Fe+/Fe2+ couples of macrobicyclic fragments and to phthalocyanine macrocycles.  相似文献   

18.
In this study supramolecular octakis phthalocyaninato-diCo(II)hexakis-Zn(II) has been synthesized in two steps. Starting with tetracyanodibenzo(1,4,7,10-tetrathia-(12-crown)) (1) and 4-nitro-1,2-dicyanobenzene (2), nitro-substituted dimeric phthalocyanine (3) was synthesized. Compound 3 reacted with unsymmetric Zn(II) phthalocyanine (4) to furnish a supramolecular assemble of a Co(II) dimer with six Zn(II) phthalocyanines through azo bridges (5). Co(II) dimeric phthalocyanine with six ferrocenyl groups (7) was obtained by the condensation of 6 with ferrocenylaldehyde. Compounds 3, 5, 6 and 7 were characterized by elemental analysis, ICP-MS, IR, UV–Vis and 1H NMR spectroscopy. The electronic properties of a thin film of the compounds were investigated by impedance spectroscopy and d.c. conductivity measurements as a function of temperature. The a.c. conductivity is found to vary with frequency, ω, as ωs with index s  1, suggesting a hopping conduction mechanism for 3 and 6. Whereas a frequency independent conductivity was observed for 5. It was found that reducing the nitro group to amines and azo coupling by the asymmetric nitro groups increases the electrical conductivity. The higher conductivity of 5 can be attributed to the increase in the mobility of charge carriers due to overlap of the π electron systems along the stacking direction of the molecules.  相似文献   

19.
This article describes a simple method developed for the synthesis of symmetrically substituted 1,8,15,22-tetra-phenylpropene-1-imino phthalocyanines (M-PhproImPcs) of cobalt(II), copper(II), nickel(II) and zinc(II) by condensing 1,8,15,22-tetra amino phthalocyanines with cinnamaldehyde. The dark bluish-green colored tetraimino substituted phthalocyanine derivatives were characterized by elemental analysis, electronic spectra, IR spectra, magnetic susceptibility, powder XRD and thermogravimetric analysis (TGA) to check the structural integrity and purity. The variations of magnetic moment as a function of field strength indicated the presence of intermolecular co-operative interactions. The complexes were also evaluated for their antibacterial activities.  相似文献   

20.
This work reports on the synthesis of new unsymmetrically substituted phthalocyanines (M = Zn, Cu, Co, Ni) bearing three benzo-15-crown-5 units through oxy bridges and a nitro group. Phthalocyanines were prepared by a statistical condensation of 4-nitro phthalonitrile and 1-{[(benzo-15-crown-5)-4′-yl]oxy}phthalonitrile in the presence of anhydrous metal salts. All the target unsymmetrical phthalocyanines were separated by column chromatography and characterized elemental analyses, 1H NMR, IR, mass and UV–Vis spectral data. Electrochemical behaviors of Cu (II) phthalocyanine by cyclic voltammetry and differential pulse voltammetry techniques gave two common phthalocyanine ring reductions and one ring oxidation processes. Peak-to-peak separation of the processes II and III (388 mV) and the measure of gap (1.672 V) between the HOMO and LUMO for the complex, fits a phthalocyanine with electrochemically inactive metal center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号