首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aptamers as analytical reagents   总被引:7,自引:0,他引:7  
Clark SL  Remcho VT 《Electrophoresis》2002,23(9):1335-1340
Many important analytical methods are based on molecular recognition. Aptamers are oligonucleotides that exhibit molecular recognition; they are capable of specifically binding a target molecule, and have exhibited affinity for several classes of molecules. The use of aptamers as tools in analytical chemistry is on the rise due to the development of the "systematic evolution of ligands by exponential enrichment" (SELEX) procedure. This technique allows high-affinity aptamers to be isolated and amplified when starting from a large pool of oligonucleotide sequences. These molecules have been used in flow cytometry, biosensors, affinity probe electrophoresis, capillary electrochromatography, and affinity chromatography. In this paper, we will discuss applications of aptamers which have led to the development of aptamers as chromatographic stationary phases and applications of these stationary phases; and look towards future work which may benefit from the use of aptamers as stationary phases.  相似文献   

2.
王勇  赵新颖  石冬冬  杨歌  屈锋 《色谱》2016,34(4):361-369
核酸适配体(aptamer)是通过指数富集配体系统进化(SELEX)技术筛选得到的核糖核酸(RNA)或单链脱氧核糖核酸(ssDNA)。核酸适配体通过高亲和力特异性地识别小分子、蛋白质、细胞、微生物等多种靶标,在生物、医药、食品和环境检测等领域的应用日渐增多。但目前实际可用的核酸适配体有限,其筛选过程复杂,筛选难度大,制约了其应用。与生物大分子、细胞和微生物等靶标不同,小分子靶标与核酸分子的结合位点少、亲和力弱,且靶标通常需要固定在载体上。此外,小分子靶标结合核酸形成的复合物与核酸自身的大小、质量、电荷性质等方面差异较小,二者的分离难度大。故小分子靶标的核酸适配体筛选过程与大分子和细胞等复合靶标相比有明显差异,筛选难度更大。因此需要根据其自身结构特点和核酸适配体的应用目的选定靶标或核酸库的固定方法,优化靶标核酸复合物的分离方法。本文介绍了不同类型小分子(具有基团差异的单分子、含相同基团分子和手性分子等)靶标的选择及其核酸适配体的筛选方法,并对核酸库的设计、与靶标结合的核酸的分离方法和亲和作用表征方法进行了介绍,列出了自2008年以来报道的40余种小分子靶标的核酸适配体序列和复合物的平衡解离常数(Kd)。  相似文献   

3.
杨歌  魏强  赵新颖  屈锋 《色谱》2016,34(4):370-381
核酸适配体是通过指数富集系统配体进化(SELEX)筛选获得的,与靶标具有高亲和力和特异性结合的单链DNA或RNA。蛋白质是生命进程中的关键功能分子。近年来,以蛋白质为靶标的适配体筛选在蛋白质相关的基础及应用研究领域受到广泛关注。核酸适配体应用性能的优劣取决于其亲和力、特异性与稳定性。目前,适配体筛选方法的优化主要是提高筛选效率、提升适配体性能及降低筛选成本。适配体主要筛选步骤包括复合物分离、核酸库优化、次级库的富集、适配体序列分析以及亲和力表征等。迄今为止,以蛋白质-核酸复合物的分离为核心步骤的适配体筛选方法有20余种。本文归纳总结了2005年以来以蛋白质为靶标的适配体筛选技术,讨论了各方法的缺陷与局限。介绍了核酸库的设计优化方法、适配体的序列特征,以及常用的亲和力表征方法。  相似文献   

4.
Aptamers are artificial nucleic acid ligands that have been employed in various fundamental studies and applications, such as biological analyses, disease diagnostics, targeted therapeutics, and environmental pollutant detection. This review focuses on the recent advances in aptamer discovery strategies that have been used to detect various chemicals and biomolecules. Recent examples of the strategies discussed here are based on the classification of these micro/nanomaterial-mediated systematic evolution of ligands by exponential enrichment (SELEX) platforms into three categories: bead-mediated, carbon-based nanomaterial-mediated, and other nanoparticle-mediated strategies. In addition to describing the advantages and limitations of the aforementioned strategies, this review discusses potential strategies to develop high-performance aptamers.  相似文献   

5.
In vitro evolution of functional DNA using capillary electrophoresis   总被引:8,自引:0,他引:8  
Electrophoretic selection with capillary electrophoresis (CE) is used, for the first time, to isolate functional nucleic acid sequences using SELEX (systematic evolution of ligands by exponential enrichment). SELEX uses molecular evolution to select functional sequences (aptamers) from random RNA or DNA libraries. Conventional SELEX is usually performed with affinity chromatography, which may introduce significant bias into the selection step. Important biases include the slow kinetics involved in the elution of strongly bound sequences and performing the selection with the target molecule tethered to the stationary support, not in free solution. In this novel CE-SELEX approach, selection occurs in free solution. The nucleic acid sequences that bind the target undergo a mobility shift, migrating at a different rate, allowing them to be separated from the inactive sequences. Thus, there is no need to wash the active sequences off a column as in conventional SELEX, eliminating any kinetic bias. In this work, the viability of CE-SELEX was demonstrated by performing selections against immunoglobulin E (IgE). Anti-IgE aptamers with dissociation constants as low as 40 nM were obtained in only two rounds of selection.  相似文献   

6.
Aptamer-based molecular recognition for biosensor development   总被引:1,自引:0,他引:1  
Nucleic acid aptamers are an emerging class of synthetic ligands and have recently attracted significant attention in numerous fields. One is in biosensor development. In principle, nucleic acid aptamers can be discovered to recognize any molecule of interest with high affinity and specificity. In addition, unlike most ligands evolved in nature, synthetic nucleic acid aptamers are usually tolerant of harsh chemical, physical, and biological conditions. These distinguished characteristics make aptamers attractive molecular recognition ligands for biosensing applications. This review first concisely introduces methods for aptamer discovery including upstream selection and downstream truncation, then discusses aptamer-based biosensor development from the viewpoint of signal production.
Figa
Aptamer-based molecular recognition for analyte detection.  相似文献   

7.
SELEX (systematic evolution of ligands by exponential enrichment) is a process that involves the progressive purification from a combinatorial library of nucleic acid ligands with a high affinity for a particular target by repeated rounds of partitioning and amplification. With the development of aptamer technology over the last decade, various modified SELEX processes have arisen that allow various aptamers to be developed against a wide variety of molecules, irrespective of the target size. In the present review, the separation methods used in such SELEX processes are reviewed.  相似文献   

8.
The method referred to as “systemic evolution of ligands by exponential enrichment” (SELEX) was introduced in 1990 and ever since has become an important tool for the identification and screening of aptamers. Such nucleic acids can recognize and bind to their corresponding targets (analytes) with high selectivity and affinity, and aptamers therefore have become attractive alternatives to traditional antibodies not the least because they are much more stable. Meanwhile, they have found numerous applications in different fields including food quality and safety monitoring. This review first gives an introduction into the selection process and to the evolution of SELEX, then covers applications of aptamers in the surveillance of food safety (with subsections on absorptiometric, electrochemical, fluorescent and other methods), and then gives conclusions and perspectives. The SELEX method excels by its features of in vitro, high throughput and ease of operation. This review contains 86 references.
Figure  相似文献   

9.
Aptamers are artificial nucleic acid ligands that can be generated against amino acids, drugs, proteins and other molecules. They are isolated from combinatorial libraries of synthetic nucleic acid by an iterative process of adsorption, recovery and reamplification. Aptamers, first reported in 1990, are attracting interest in the areas of therapeutics and diagnostics and offer themselves as ideal candidates for use as biocomponents in biosensors (aptasensors), possessing many advantages over state of the art affinity sensors. The properties of aptamers, their applicability to biosensor technology, current research and future prospects are addressed in this short review.  相似文献   

10.
New trends in affinity sensing: aptamers for ligand binding   总被引:1,自引:0,他引:1  
Aptamers are artificial nucleic acid ligands that can be generated against amino acids, drugs, proteins and other molecules. They are isolated from complex libraries of synthetic nucleic acids by an iterative process of adsorption, recovery and amplification. This review described the in vitro process to obtain aptamers (SELEX). It mentions the main characteristics of these molecules (i.e. affinity, specificity and stability). Moreover, it discusses advantages over antibodies. It reports potential applications of aptamers in analytical and diagnostic assays as biocomponents of biosensors (aptasensors) and allosteric ribozymes (aptazymes).  相似文献   

11.
王薇薇  刘素琴  薛芸  王彦  阎超 《色谱》2017,35(1):99-104
核酸适配体是一种经由体外指数级富集系统进化技术筛选得到的随机寡核苷酸片段,该寡核苷酸片段能特异性结合靶物质。核酸适配体与固相萃取技术相结合,可以高选择性地应用于复杂样品中痕量组分的萃取、分离、富集和纯化,由此引起了广泛关注。该文综述了基于核酸适配体的固相萃取研究进展,着重评述了核酸适配体固相萃取柱的制备、固相萃取过程、面临的问题和应用前景。  相似文献   

12.
The systematic evolution of ligands by exponential enrichment (SELEX) is a combinatorial oligonucleotide library-based in vitro selection approach in which DNA or RNA molecules are selected by their ability to bind their targets with high affinity and specificity, comparable to those of antibodies. Nucleic acids with high affinity for their targets have been selected against a wide variety of compounds, from small molecules, such as ATP, to membrane proteins and even whole organisms. Recently, the use of the SELEX technique was extended to isolate oligonucleotide ligands, also known as aptamers, for a wide range of proteins of importance for therapy and diagnostics, such as growth factors and cell surface antigens. The number of aptamers generated as inhibitors of various target proteins has increased following automatization of the SELEX process. Their diagnostic and therapeutic efficacy can be enhanced by introducing chemical modifications into the oligonucleotides to provide resistance against enzymatic degradation in body fluids. Several aptamers are currently being tested in preclinical and clinical trials, and aptamers are in the process of becoming a new class of therapeutic agents. Recently, the anti-VEGF aptamer pegaptanib received FDA approval for treatment of human ocular vascular disease.  相似文献   

13.
核酸适体(Aptamer)是通过体外筛选得到的短单链DNA或RNA寡核苷酸, 具有与抗体相当或更优异的特异性及亲和力, 且具有靶标范围广、 易制备和灵活可控修饰、 免疫原性低、 批次差异性小以及易于运输保存等优势, 为食品、 环境和生物医学等领域提供了全新的分子识别工具, 获得了研究者的广泛关注. 但是目前其商业应用的数量仍有限. 为了增强核酸适体的应用性能, 研究者对核酸适体进行了大量的改性研究. 本文系统总结了核酸适体筛选前、 后采用非共价或共价方式对其进行化学修饰, 以增加核酸适体与靶标的结合亲和力的相关研究进展, 并对未来发展前景进行了展望.  相似文献   

14.
核酸适体是从寡核苷酸文库中筛选获得的一段单链寡核苷酸. 由于能与多种靶标分子高特异性结合, 核酸适体已发展成为一种新兴的分子识别工具, 广泛应用于生物医学等领域. 天然核酸文库有限的化学组成限制了核酸适体的结构和功能, 进而限制了其在分子识别中的应用. 功能化核酸适体通过引入特定的化学官能团使核酸序列具有更丰富的构象和功能, 增强其分子识别能力. 然而, 功能化核酸很难与核酸扩增方法兼容, 因而难以使用传统筛选方法进行功能化核酸的筛选. 因此, 优化筛选方法对于获得具有优异性能的功能化核酸适体至关重要. 本综述总结了功能化核酸适体的筛选方法, 并介绍了其作为分子识别工具在生物医学领域中的应用.  相似文献   

15.
基于Cell-SELEX的核酸适配体是指以活细胞为靶标物,通过指数富集的配基系统进化技术(Systematic evolution of ligands by exponential enrichment,SELEX)从人工合成的DNA/RNA文库中筛选得到的单链寡核苷酸.它能够与靶标细胞高亲和性、高特异性结合,具有分子量低、合成简单、化学稳定性好、免疫原性低、易于功能化修饰等优点,已广泛应用于生命科学研究领域.本文综述了基于Cell-SELEX技术筛选的核酸适配体在肿瘤细胞检测、分析和成像方面的研究进展,并对核酸适配体研究的发展前景和趋势进行了展望.  相似文献   

16.
Proteins play a central role in all domains of life, and precise regulation of their activity is essential for understanding the related biological processes and therapeutic functions. Nucleic acid aptamers, the molecular recognition components derived from systematic evolution of ligands by exponential enrichment(SELEX), can specifically identify proteins with antibody-like recognition characteristics and help to regulate their activity. This minireview covers the SELEX-based selection of protein-binding aptamers, membrane protein analytical techniques based on aptamer-mediated target recognition, aptamer-mediated functional regulation of proteins, including membrane receptors and non-membrane proteins(thrombin as a model), as well as the potential challenges and prospects regarding aptamer-mediated protein manipulation, aiming to supply some useful information for researchers in this field.  相似文献   

17.
Recent progress in the development of electrochemical nanomaterial–aptamer-based biosensors is summarized. Aptamers are nucleic acid ligands that can be generated against amino acids, drugs, proteins, and other molecules. They are isolated from a large random library of synthetic nucleic acids by an iterative process of binding, separation, and amplification, called systematic evolution of ligands by exponential enrichment (SELEX). In this review, different methods of integrating aptamers with different nanomaterials and nanoparticles for electrochemical biosensing application are described.  相似文献   

18.
武振宁  薛书江  杨咏洁 《色谱》2018,36(10):947-951
核酸适配体是一类具有高度特异性和亲和力的单链寡核苷酸,被誉为"人工单抗",具有广阔的应用前景。它一般是通过指数富集的配基系统进化(SELEX)技术筛选获得。目前SELEX技术多局限于单一、纯化的可溶性蛋白质靶标。然而,蛋白质的纯化过程繁琐,耗时费力,而且很多靶标(如血清中的低丰度蛋白质或细胞的膜蛋白)很难纯化获得单一纯品。复合靶SELEX技术则可以避免靶标的纯化过程,能够保持靶标的天然构象,并且可以在未明确靶标的组成及结构特性的前提下,通过高通量的盲筛获得一系列特异性核酸适配体。该文主要介绍以未纯化的各种生物样本为复合靶的SELEX技术,以期为核酸适配体的筛选提供新思路。  相似文献   

19.
We have screened glutamic acid-binding aptamers from a modified DNA pool containing arginine residues using the method of systematic evolution of ligands by exponential enrichment (SELEX). Thirty-one modified DNA molecules were obtained from the enriched pool after the 17th round of selection, and their binding affinities for the target were evaluated by binding assays using affinity gels. Three modified DNA molecules having higher affinity were sequenced and we determined their affinity and specificity for the target by surface plasmon resonance (SPR) measurements. The SPR studies indicated that two of these three aptamers distinguished the dicarboxylic acid moiety of the D-isomer from that of the L-isomer; however, the third aptamer did not show enantioselectivity.  相似文献   

20.
Affinity chromatography on monolithic supports is a powerful analytical chemical platform because it allows for fast analyses, small sample volumes, strong enrichment of trace biomarkers and applications in microchips. In this review, the recent research using monolithic materials in the field of bioaffinity chromatography (including immunochromatography) is summarized and discussed. After giving an introduction into affinity chromatography, information on different biomolecules (antibodies, enzymes, lectins, aptamers) that can act as ligands in bioaffinity chromatography is presented. Subsequently, the history of monoliths, their advantages, preparation and formats (disks, capillaries and microchips) as well as ligand immobilization techniques are mentioned. Finally, analytical and preparative applications of bioaffinity chromatography on monoliths are presented. During the last four years 37 papers appeared. Protein A and G are still most often used as ligands for the enrichment of immunoglobulins. Antibodies and lectins remain popular for the analysis of mainly smaller molecules and saccharides, respectively. The highly porous cryogels modified with ligands are applied for the sorting of different cells or bacteria. New is the application of aptamers and phages as ligands on monoliths. Convective interaction media (epoxy CIM disks) are currently the most used format in monolithic bioaffinity chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号