首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kang J  Wistuba D  Schurig V 《Electrophoresis》2003,24(15):2674-2679
A fast and sensitive method is described by using vancomycin as a chiral additive for enantiomeric separation by capillary electrophoresis (CE). In order to overcome disadvantages associated with use of vancomycin as chiral additive in CE, several strategies including the dynamic coating technique, the co-electroosmotic flow technique, and the partial filling technique were employed sequentially in this method. Using the polycationic polymer hexadimethrine bromide (HDB) as a buffer additive, the capillary wall was dynamically coated with a thin film formed by the adsorbed HDB. Consequently, the adsorption of vancomycin onto the capillary wall was minimized via electrostatic repulsion between the coating of the capillary wall and the vancomycin molecule. In addition, the reversed electroosmotic flow (from cathode to anode) produced by the positively charged capillary wall migrates in the same direction of negatively charged analytes (co-electroosmotic flow electrophoresis). Thereby the electrophoretic mobility of negatively charged analytes were drastically accelerated leading to a short separation time of less than 3.4 min. The separation time was further reduced by the use of a short-end-injection technique. For example, the analysis time was achieved by as short as 55 s for a baseline separation of dansyl-alpha-amino-n-butyric acid. Concurrently, the partial filling technique was used to avoid the loss of detection sensitivity caused by the presence of vancomycin in the running buffer. The effect of several parameters, such as HDB concentration, buffer pH, plug length of the chiral selector, concentration of the chiral selector and applied voltage, on enantioselectivity were investigated toward optimization. Besides the advantage of a very short separation time, the method is characterized by high detection sensitivity, high selectivity, and high efficiency.  相似文献   

2.
Separation of atropisomers of analogues of the anti-hepatitis drug dimethyl diphenyl bicarboxylate (DDB) by capillary electrophoresis with vancomycin as the chiral selector is described. Among several tested chiral selectors, including various cyclodextrin derivatives as well as vancomycin, only the latter displayed the enantioselectivity to the studied atropisomers. However, relatively poor separation efficiency was obtained due to the adsorption of vancomycin on the capillary wall. This problem was overcome by modifying the capillary wall with a polycationic electrolyte named hexadimethrine bromide (HDB) to produce a positively charged coating, which minimized the adsorption of vancomycin on the capillary wall by electrostatic repulsion. Moreover, the positively charged coating could shorten the separation time by reversing the EOF because the reversed EOF migrated to the same direction as the negatively charged analyte. Effects of buffer pH, vancomycin and buffer concentrations and applied voltage on the separation were investigated and the optimal conditions were established as follows: 40 mM Tris-phosphate buffer (pH 6.0) containing 6.0 mM vancomycin and 0.001% HDB. Baseline separation of three racemic DDB analogues was obtained within 12 min under the optimal conditions.  相似文献   

3.
The glycopeptide antibiotic balhimycin and its haloanalogue bromobalhimycin were evaluated as chiral selectors for enantioresolution by capillary electrophoresis. In order (i) to eliminate the adsorption of the glycopeptide antibiotics on the capillary wall, (ii) to shorten the separation time and (iii) to improve the detection sensitivity, a combined approach of the dynamic surface coating technique, the co-electroosmotic flow electrophoresis technique and the partial filling technique was employed for the enantioresolution of 16 acidic racemates. The effect of experimental parameters (plug length of the partial filling solution containing the chiral selector, selector concentration and buffer pH) on enantiorecognition was investigated. Furthermore, the enantiorecognition ability imparted by balhimycin, bromobalhimycin and vancomycin were compared. For most tested compounds, the highest enantiorecognition was obtained with balhimycin as chiral selector. Only in the case of the enantioresolution of tiaprofenic acid, vancomycin showed a superior enantiorecognition.  相似文献   

4.
Wang  Zhaoyan  Mu  Changjun  Kang  Jingwu  Hu  Zhide 《Chromatographia》2012,75(19):1211-1215

A highly sensitive and rapid method was developed that involves capillary electrophoresis for separation and determination of the stereoisomeric impurity of folinic acid diastereomers. In this method, vancomycin was used as the chiral selector, and a solution of poly(dimethylacrylamide) (PDMA) was prepared for dynamic coating of the capillary wall to minimize the adsorption of vancomycin. This method was optimized for six factors including concentrations of the organic modifier and vancomycin, pH and concentration of the background electrolyte, column temperature, and separation voltage. The following conditions were established: 100 mM Tris-phosphate buffer (pH 6.0) containing 1.0 mM vancomycin and 5 % acetonitrile at 30 °C, and −15 kV applied voltage on the PDMA dynamically coated capillary. Preliminary validation was performed with the determination of limit of quantification and detection, accuracy, precision, and linearity. Under our optimized method, the folinic acid diastereomers were baseline-separated within 7.5 min, and a (6S,2′S)-calcium folinate sample with 0.08 % stereoisomeric impurity was determined.

  相似文献   

5.
We present the polymer poly-N-hydroxyethylacrylamide (PHEA) (polyDuramide) as a novel, hydrophilic, adsorbed capillary coating for electrophoretic protein analysis. Preparation of the PHEA coating requires a simple and fast (30 min) protocol that can be easily automated in capillary electrophoresis instruments. Over the pH range of 3-8.4, the PHEA coating is shown to reduce electroosmotic flow (EOF) by about 2 orders of magnitude compared to the bare silica capillary. In a systematic comparative study, the adsorbed PHEA coating exhibited minimal interactions with both acidic and basic proteins, providing efficient protein separations with excellent reproducibility on par with a covalent polyacrylamide coating. Hydrophobic interactions between proteins and a relatively hydrophobic poly-N,N-dimethylacrylamide (PDMA) adsorbed coating, on the other hand, adversely affected separation reproducibility and efficiency. Under both acidic and basic buffer conditions, the adsorbed PHEA coating produced an EOF suppression performance comparable to that of covalent polyacrylamide coating and superior to that of adsorbed PDMA coating. The protein separation performance in PHEA-coated capillaries was retained for 275 consecutive protein separation runs at pH 8.4, and for more than 800 runs at pH 4.4. The unique and novel combination of hydrophilicity and adsorptive coating ability of PHEA makes it a suitable wall coating for automated microscale analysis of proteins by capillary array systems.  相似文献   

6.
A coating procedure based on the physical adsorption of hydroxypropyl cellulose onto the wall of a capillary column has been successfully used for the separation of DNA fragments up to 500 bp. The method uses a running Tris-phosphate-EDTA buffer containing 2-hydroxyethyl cellulose as sieving polymer. The separation procedure shows good reproducibility (measured as RSD%) for consecutive runs (<0.64), for different days (< 1.15) and capillaries (<2.15), short analysis times, and a long coating lifetime. Good reproducibility and efficiency are even achieved by performing the separation in the presence of additives such as ethidium bromide and mannitol. The method is applied to the detection of GMOs in soybean and maize meals with an accurate evaluation of the length of DNA sequences, previously amplified by polymerase chain reaction.  相似文献   

7.
Polydopamine (PolyD) coating was used as an adhesive layer in the preparation of biological stationary phases for open tubular capillary electrochromatography (OT-CEC). The influence of coating solution freshness, coating time, temperature and dopamine hydrochloride concentration on the PolyD layer formation was studied. The performance of the polyD coating was monitored by measuring the electro-osmotic flow in coated capillaries. Following polyD coating of the capillary, secondary layer material (e.g. cell membrane solutions, phospholipid mixtures or mitochondria) was inserted into the capillary for at least 1?h. The performance of these double-coated capillaries (a polyD layer+a biological material layer) was compared with capillaries containing the respective biological material directly attached to the capillary wall. The study reveals that the presence of polyD layer in fused silica capillaries improves the performance of lipid and membrane fragment coatings in capillaries. At the same time, the thickness of the polyD layer does not have marked impact on the secondary coatings. Analysis with test analytes demonstrated that double-coated capillaries can be applied to study membrane-drug interactions.  相似文献   

8.
Zhang J  Horváth C 《Electrophoresis》2003,24(1-2):115-120
A simple coating technique by using uncross-linked dextran has been developed for fused-silica capillaries to be used in capillary electrophoresis of basic proteins. The capillaries were first silanized with a heterobifunctional silane (gamma-aminopropyltriethoxylsilane), which served as a coupling agent between the capillary inner wall and the polysaccharide coating. Dextran of high molecular mass (about 70 kDa) was activated with 1,1'-carbonyldiimidazole. Then the activated dextran was coupled to the primary amino groups that were anchored onto the inner wall of the silanized capillaries. The residual reactive groups on the dextran were further substituted by neutral functions in a coupling reaction with excess ethanolamine. By using dimethyl sulfoxide (DMSO) rather than aqueous buffer as the reaction medium, the extent of substitution was improved by minimizing the residual reactive groups at the surface. Since they are ionogenic, the electrosmotic flow in the system is relatively low. The chemically bound dextran coating showed good reproducibility and stability. In electrophoretic experiments basic proteins were separated with high efficiency by use of the dextran-coated fused-silica capillary columns. The main advantage of the method described here is that both polysaccharide activation and amine-coupling reactions were carried out under mild conditions at room temperature without catalysts. For this reason, the method is recommended to coat the inner wall of microfluidic separation channels which would not tolerate a harsh treatment.  相似文献   

9.
Quasi‐interpenetrating network (quasi‐IPN) of linear polyacrylamide (LPA) with low molecular mass and poly(N,N‐dimethylacrylamide) (PDMA), which is shown to uniquely combine the superior sieving ability of LPA with the coating ability of PDMA, has been synthesized for application in dsDNA and basic protein separation by CE. The performance of quasi‐IPN on dsDNA separation was determined by polymer concentration, electric field strength, LPA molecular masses and different acrylamide (AM) to N,N‐dimethylacrylamide (DMA) ratio. The results showed that all fragments in Φ×174/HaeIII digest were achieved with a 30 cm effective capillary length at –6 kV at an appropriate polymer solution concentration in bare silica capillaries. Furthermore, EOF measurement results showed that quasi‐IPN exhibited good capillary coating ability, via adsorption from aqueous solution, efficiently suppressing EOF. The effect of the buffer pH values on the separation of basic proteins was investigated in detail. The separation efficiencies and analysis reproducibility demonstrated the good potentiality of quasi‐IPN matrix for suppressing the adsorption of basic proteins onto the silica capillary wall. In addition, when quasi‐IPN was used both as sieving matrix and dynamic coating in bare silica capillaries, higher peak separation efficiencies, and better migration time reproducibility were obtained.  相似文献   

10.
In this work, a new physically adsorbed coating for capillary electrophoresis (CE) is presented. The coating is based on a N,N-dimethylacrylamide-ethylpyrrolidine methacrylate (DMA-EPyM) copolymer synthesized in our laboratory. The capillary coating is simple and easy to obtain as only requires flushing the capillary with a polymer aqueous solution for 2 min. It is shown that by using these coated capillaries the electrostatic adsorption of a group of basic proteins onto the capillary wall is significantly reduced allowing their analysis by CE. Moreover, the DMA-EPyM coating provides reproducible separations of the basic proteins with RSD values for migration times lower than 0.75% for the same day (n = 5) and lower than 3.90% for three different days (n = 15). Interestingly, the electrical charge of the coated capillary wall can be modulated by varying the pH of the running buffer which makes possible the analysis of basic and acidic proteins in the same capillary. The usefulness of this coating is further demonstrated via the reproducible separation of whey (i.e. acidic) proteins from raw milk. The coating protocol should be compatible with both CE in microchips and CE-MS of different types of proteins.  相似文献   

11.
A new type of capillary column for open-tubular electrochromatography   总被引:1,自引:0,他引:1  
Zhao Y  Zhao R  Shangguan D  Liu G 《Electrophoresis》2002,23(17):2990-2995
A new type of open-tubular C(18) ester-bonded electrochromatographic column was prepared with sol-gel technology, followed by an on-column octadecyl silylation reaction. Glycidoxypropyltrimethoxysilane, a widely used and important silane agent, was used as the sol-gel precursor to form a thin coating layer on the wall of the fused-silica capillary. The C(18) groups were introduced into the coating layer by on-column esterification reaction with stearic acid. The electrochromatography behavior of the column was evaluated in terms of the separation of peptides. A high efficiency of 4.8x10(5) plates/m was achieved for a basic pentapeptide using the C(18 )ester-bonded column. In comparison with bare capillaries and glycidoxypropyltrimethoxysilane sol-gel-coated capillaries, the C(18) ester-bonded column showed the best separation of a mixture of seven pentapeptides under identical conditions of buffer, pH, and applied voltage.  相似文献   

12.
To stabilize electroosmotic flow (EOF) and suppress protein adsorption onto the silica capillary inner wall, a cationic hydroxyethylcellulose-graft-poly (poly(ethylene glycol) methyl ether methacrylate) (cat-HEC-g-PPEGMA) graft copolymer composed of cationic backbone and bottle brush-like side chains was synthesized for the first time and used as a novel physically adsorbed coating for protein separation by capillary electrophoresis. Reversed (anodal) and very stable EOF was obtained in cat-HEC-g-PPEGMA-coated capillary at pH 2.2-7.8. The effects of degree of cationization, PEGMA grafting ratio, PEGMA molecular mass, and buffer pH on the separation of basic proteins were investigated. A systematic comparative study of protein separation in bare and HEC-coated capillaries and in cat-HEC-g-PPEGMA-coated capillary was also performed. The basic proteins can be well separated in cat-HEC-g-PPEGMA-coated capillary over the pH range of 2.8-6.8 with good repeatability and high separation efficiency, because the coating combines good protein-resistant property of bottle brush-like PPEGMA side chains with excellent coating ability of cat-HEC backbone. Besides its success in separation of basic proteins, the cat-HEC-g-PPEGMA coating was also superior in the fast separation of other protein samples, such as protein mixture, egg white, and saliva, which indicates that it is a promising coating for further proteomics analysis.  相似文献   

13.
The effect of calcium on phospholipid coatings in fused silica capillaries used in capillary electrophoresis was studied. The anionic liposomes used for the coating consisted of 3 mM 1-palmitoyl-2-oleyl-sn-glycero-3-phosphatidylcholine and phosphatidylserine in the ratio 80/20 mol%. Coating was performed as part of the preconditioning, and the capillaries could be used for several runs without the need for liposomes in the background electrolyte solution or for liposome rinses between runs. Phospholipids could easily be flushed away by rinsing with a chloroform-methanol (2:1 v/v) mixture, which made it possible to recoat and reuse the capillaries. A calcium:phospholipid ratio of approximately 3 gave the most stable coating. The stability of the coating and success of the coating procedure were studied by measuring the electroosmotic flow and by separating uncharged steroids, which were used as model compounds. Many parameters that affect the coating, such as preconditioning (with different acids and bases), buffer, temperature during coating, and the physical structures of liposomes, were studied, with and without calcium in the liposome solution. The separation of steroids was improved and was less dependent on coating conditions when calcium was present during the coating. Capillaries optimally coated with anionic phospholipids were applied in the separation of phenols.  相似文献   

14.
Optimum conditions for the separation of positional isomers of chlorophenols by capillary zone electrophoresis (CZE) were established. The behavior of five volatile electrolytes (L-cysteic acid, 3-amino-1-propanesulfonic acid, aminomethanesulfonic acid, diethylmalonic acid, and ammonium acetate) was compared. The best performance based on low electrophoretic current and high separation efficiency was obtained for diethylmalonic acid as working electrolyte. The influence of pH on the separation, using both uncoated fused-silica capillaries and modified capillaries (NaAMPS from EKT) with anionic coating, was discussed. Moreover, the effect of electrolyte concentration and applied voltage using fused-silica capillaries was studied. The optimum CZE conditions that allowed the separation of 16 chlorophenols were 20 kV, 30 mM diethylmaIonic acid, pH 7.25, and uncoated fused-silica capillary. Figures of merit such as run-to-run and day-to-day precision, linearity, and limits of detection were calculated.  相似文献   

15.
Oguri S  Hibino M  Mizunuma M 《Electrophoresis》2004,25(12):1810-1816
We report on the effect on performance of varying the length of the capillary during throughout in-capillary derivatization (TICD) capillary electrophoresis (CE). Performance was evaluated by on-line coupling with a sample and CE runbuffer loading device that was newly introduced for this study. The device was assembled with a low cost using two 5 mm inner diameter (ID) disposable polyethylene syringes. First, a sequence was manually formed consisting of a 200 microL run buffer solution plug, a 100 microL sample plug and another 200 microL run buffer solution plug. Each plug was separated from its neighbor by a 100 microL air plug. When each plug reached the injection point where both a platinum-wire anode and the end of the separation capillary tube were located, 340 V/cm separation voltage (electrophoresis voltage) and 34 V/cm injection voltage were applied to the capillary for 3 s. Then the analytes were derivatized during migration in 50 microm ID capillaries filled with 2 mM o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) in a 20 mM phosphate-borate buffer (pH 10), followed by separating and detecting of OPA derivatives by absorbance of 340 nm. Derivatization, separation, and detection were performed systematically using capillaries which varied in length from 5 to 80 cm. In the case of TICD-CE of a mixture containing 1 mM aspartic acid (Asp) and 20 mM m-nitorophenol (MNP) as a test solution, it was determined that peak area and peak width ratios of Asp to MNP did not depend on capillary length. Enantiomeric separations of DL-alanine (Ala) and Asp were examined using a run buffer consisting of a 45 microM beta-cyclodextrin (CD)-2 mM OPA/NAC-20 mM phosphate-borate buffer (pH 10). Even though the resolution of these enantiomeric pairs decreased with decreasing capillary length, as expected, the peaks corresponding to both enantiomeric amino acids were identified even when a 5 cm capillary was used. An 8-component amino acid mixture was also tested with 5 cm and 10 cm capillaries.  相似文献   

16.
Like other colloidal particles bacteria have a surface charge that originates from the ionization of surface molecules and of the adsorption of ions from solution. Bacterial cell wall and membranes containing numerous proteins, lipid molecules, teichoic acids, lipopolisaccharides which give them characteristic charge. Therefore, bacterial cells undergo electrophoresis in a free solution with their own mobility depending on ionic strength and pH of buffer solution. Various electromigration techniques can be used to separate and determine the intact cells. Successful separation of five species of bacteria was obtained using a trimethylchlorosilane-modified capillary and a divinylbenzene-modified with suppressed EOF over a short distance (8.5 cm). The utilization of coated capillaries prevents adsorption of bacteria to the capillary wall. Another approach is utilization of a dilute dissolved polymer, polyethylene oxide (PEO) in the running buffer as a non-bonded coating for the purpose of altering the EOE These experiment have proved the possibility of diagnosing a variety of diseases and the ability to separate and identify viable cells.  相似文献   

17.
Gao L  Patterson EE  Shippy SA 《The Analyst》2006,131(2):222-228
A simple automated nanoliter scale injection device which allows for reproducible 5 nL sample injections from samples with a volume of <1 microL is successfully used for conventional capillary electrophoresis (CE) and Hadamard transform (HT) CE detection. Two standard fused silica capillaries are assembled axially through the device to function as an injection and a separation capillary. Sample solution is supplied to the injection capillary using pressure controlled with a solenoid valve. Buffer solution flows gravimetrically by the junction of the injection and separation capillaries and is also gated with a solenoid valve. Plugs of sample are pushed into the space between the injection and separation capillaries for electrokinectic injection. To evaluate the performance of the injection device, several optimizations are performed including the influence of flow rates, the injected sample volume and the control of the buffer transverse flow on the overall sensitivity. The system was then applied to HT-CE-UV detection for the signal-to-noise ratio (S/N) improvement of the nitric oxide (NO) metabolites, nitrite and nitrate. In addition, signal averaging was performed to explore the possibility of greater sensitivity enhancements compared to single injections.  相似文献   

18.
Analysis reproducibility and detection sensitivity of capillary electrophoresis (CE) are often questioned by applied scientists, which has hindered its application as a routine method. To address these issues, a simple, precise, and reproducible dynamic coating method was developed by applying carboxymethyl chitosan (CMC) dynamic coating on fused silica capillary. The proposed coating was accomplished by simply rinsing the capillary with CMC solution for 1 min in between runs, with no regeneration procedure or buffer additives needed. Electroosmotic flow could be well controlled by adjusting the pH of background electrolyte, and the adsorption of analytes onto the capillary inner wall was effectively eliminated. The main parameters of the coating condition were optimized, and extensive applications of these CMC-dynamically coated capillaries in CE separations were then firmly confirmed. By using proteins, aristolochic acids, and inorganic anions as model analytes, the coating showed a good stability, high reproducibility, as well as improved sensitivity. Baseline separations could be obtained with high efficiency. The reduced adsorption was impressively effective for basic proteins, with an average plate number of 90,000/m for each protein, apart from the good resolution on the chromatogram. A high sensitive detection of α-lactalbumin was achieved with a limit of detection (S/N = 3) of 3.5 nM, and the number of theoretical plates was as high as 1,200,000/m. In addition, the combination of the CMC coating with nonaqueous CE and CE-mass spectrometry proved to be practical. All results showed that the CMC-dynamically coated capillary has special properties and obvious superiority over the uncoated ones for CE analysis.  相似文献   

19.
In this work, capillary electrophoresis was applied to protein profiling of fractionated extracts of maize. A comparative study on the application of uncoated fused‐silica capillaries and capillaries modified with hydroxypropylmethylcellulose, ω‐iodoalkylammonium salt and a commercially available neutral capillary covalently coated with polyacrylamide is presented. The coating stability, background electrolyte composition, and separation efficiency were investigated. It was found that for zeins separation, the most stable and efficient was the capillary coated with polyacrylamide. Finally, the usefulness of these methods was studied for the differentiation of zein fraction in transgenic and nontransgenic maize. Zeins extracted from maize standards containing 0 and 5% m/m genetic modification were successfully separated, but slight differences were observed in terms of the zein content. Albumin and globulin fractions were analyzed with the use of unmodified fused‐silica capillary with borate buffer pH 9 and the capillary coated with polyacrylamide with phosphate buffer pH 3. In the albumin fraction, additional peaks were found in genetically modified samples.  相似文献   

20.
This paper reports on a new strategy for coating fused silica capillaries based on the ionic adsorption of acid treated single-walled carbon nanotubes (SWCNTs) on a poly(diallydimethylammonium chloride)-modified fused silica surface. The coated capillaries were used to demonstrate their performance for baseline separation of a mixture of seven nitrogen-containing aromatic compounds compared to capillary zone electrophoresis. This combined layer formed a coating material that could be useful for improvement of the selectivity of the solutes in an electrical field. We reasoned that the interaction of the solutes and the modified capillary wall occurred mainly via ionic interactions with the charged moieties of CNTs. The single-walled CNT modified capillaries were very stable and could be used for over 200 repeated analyses without compromising its analytical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号