首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
采用恒电位法在多孔阳极氧化铝模板中电沉积Pd纳米线阵列,再运用循环伏安法在Pd纳米线阵列表面沉积Pt纳米粒子制备出复合纳米材料电极。运用循环伏安法和计时电流法研究了该复合纳米材料电极对乙醇的电催化性能的影响。结果表明,Pt纳米粒子/Pd纳米线复合电极相比于单独的Pd纳米线电极或Pt纳米粒子电极,对乙醇氧化有更高的电催化活性和很好的稳定性。  相似文献   

2.
采用溶剂热法合成了共价有机框架材料,并使铂(Ⅳ)通过电化学还原沉积于此材料上,制成作为固定化基质的Pt/COF-LZUI。另据文献分别制备了MnO_2纳米材料,Pd NPs/MnO_2纳米复合材料,及以此为标记物的CRP抗体。用上述材料按规定程序修饰玻碳电极并制成夹心型CRP免疫传感器。利用固体核磁、X射线粉末衍射对COF-LZUI的结构和晶型结构进行了表征,利用透射电镜对COF-LZUl、Pt/COF-LZUl和Pd NPs/MnO_2纳米复合材料的形貌进行了表征。采用循环伏安法和计时电流法(i-t)研究该传感器的电化学特性及该电极对过氧化氢的电化学响应。该传感器的线性范围为1~150μg·L-1,检出限(3σ)为0.33μg·L~(-1)。  相似文献   

3.
采用阳极氧化铝(AAO)模板法电化学沉积制备了Pt纳米线阵列(Pt NWs)氧还原催化剂, 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电化学测试对Pt纳米线阵列催化剂的形貌和电催化性能进行了表征. 循环伏安法(CV)研究表明Pt纳米线阵列催化剂的电化学活性面积大于其几何面积; 旋转圆盘电极(RDE)测试研究发现, 制备的Pt纳米线阵列催化剂的氧还原反应(ORR)曲线的半波电势相对Pt/C的有正移, 并且Pt纳米线阵列催化剂的极限扩散电流比Pt/C大.  相似文献   

4.
基于铂微粒和Nafion膜修饰玻碳电极的甲醛传感器   总被引:1,自引:0,他引:1  
通过在Nafion膜修饰玻碳电极表面电沉积铂微粒制备了甲醛电化学传感器(Pt/Nafion/GCE)。利用循环伏安法研究了甲醛在该传感器上的电化学行为,优化了实验参数,在此基础上建立了用伏安法直接测定甲醛的新方法。在酸性溶液中,甲醛的氧化峰电流与其浓度在1.0×10-6~1.0×10-3mol/L的范围内呈良好的线性关系(r=0.9995),检出限为5.0×10-7mol/L。本文所提出的测定甲醛的方法具有较高的灵敏度和较好的重现性。  相似文献   

5.
制备了钯(Pd)/壳聚糖-还原氧化石墨烯(CS-RGO)修饰电极。采用循环伏安法研究了利发霉素在该修饰电极上的电化学行为,并利用示差脉冲伏安法对其进行测定。在0.1 mol·L~(-1)的磷酸盐缓冲溶液(PBS,pH=7.0)中,利发霉素的氧化峰电流大小与其浓度在1.0×10~(-7)~1.0×10~(-3) mol·L~(-1)浓度范围内成良好的一次线性关系,检出限为7.4×10~(-9) mol·L~(-1)(S/N=3)。此外,该修饰电极具有很好的稳定性和抗干扰能力。  相似文献   

6.
将1.00g·L~(-1) DNA溶液与1.00mmol·L~(-1)三氯化铁溶液混合制得DNA-Fe(Ⅲ)配合物溶液。取溶液20μL滴涂于经抛光的GCE表面,滴加0.50g·L~(-1) CTS溶液10μL,于20℃干燥22h制得DNA-Fe/CTS修饰的GCE电极。利用扫描电子显微镜对DNA-Fe/CTS BPICM的形貌进行了表征。采用循环伏安法和安培-时间曲线法研究该修饰电极的电化学特性及该电极对过氧化氢的电化学响应。结果表明,固定在聚合膜中的铁离子表现出较好的电化学活性,DNA-Fe/CTS/GCE对过氧化氢的还原反应具有较好的电催化活性。由此提出了一种新型生物相容性过氧化氢电化学传感器。该传感器的线性范围为0.01~2.0mmol·L~(-1),检出限(3S/N)为3μmol·L~(-1)。  相似文献   

7.
制备了一种基于AuNP/PEI/MWCNTs纳米复合材料的电化学传感器,并通过循环伏安法(CV)测定痕量的双酚A(BPA)。AuNP紧密地锚固在管状交联的聚乙烯亚胺均匀包裹的多壁碳纳米管(MWCNTs)的空隙中形成AuNP/PEI/MWCNTs。利用场发射扫描电子显微镜和粉末X射线衍射对AuNP/PEI/MWCNTs纳米复合材料进行了形貌结构的表征。本实验利用循环伏安法测定的线性范围为0.1μmol·L~(-1)~100μmol·L~(-1),根据S/N=3计算BPA的检出限(LOD)为10.5 nmol·L~(-1),并且该电化学传感器用于测定包装饮用水样品中BPA的迁移,回收率为95.6%~106.6%。  相似文献   

8.
采用一步电化学沉积方法分别将三种常用贵金属纳米颗粒(Au,Ag,Pt)负载于工作电极上,构建了基于纳米薄膜的过氧化氢(H_2O_2)无酶电化学传感器。通过扫描电子显微镜(SEM)表征证明三种金属纳米颗粒成功修饰在玻碳电极(GCE)表面。通过比较三种金属纳米颗粒检测H_2O_2的能力,发现Ag纳米粒子具有更优异的催化活性。进一步研究扫描速率和检测电压对Ag/GCE催化性能的影响。电化学实验结果表明,该修饰电极显示出优异的H_2O_2催化活性以及在优化条件下可以达到0.01~23mmol·L~(-1)的线性范围,检出限为3.3μmol·L~(-1),并将该传感器用于检测吐温80中残留H_2O_2,为吐温80的质量检查提供了一种简单快捷的方法。  相似文献   

9.
以PS-b-PEO纳米孔膜为基体电极,采用电沉积技术制备了Pt纳米线,用扫描电化学显微镜(SECM)、扫描电镜(SEM)和X-射线能谱(EDS)分析法表征了基体电极和Pt纳米线。利用循环伏安法考察了Pt纳米线的电化学性能。实验结果表明,Pt纳米线对甲酸氧化表现出优异的电催化活性。此外,Pt纳米线具有良好的稳定性和重现性,可望用于实际样品中甲酸的测定。  相似文献   

10.
将辣根过氧化酶(HRP)固定在壳聚糖(CTS)-羧基化多壁碳纳米管(C-MWNTs)复合物修饰的玻碳电极(GCE)表面,制得壳聚糖-羧基化多壁碳纳米管(HRP-CTS/C-MWNTs/GCE)电化学传感器。采用傅立叶变换红外光谱仪检测复合物包埋的HRP,发现其结构性质未发生改变;采用循环伏安法对该电极的电化学性能进行研究,结果表明:在1/15 mol·L~(-1)的PBS(pH 6.98)缓冲溶液中出现1对氧化还原峰,传感器对过氧化氢有良好的电催化还原作用。过氧化氢浓度在0.1~12 mmol·L~(-1)范围内与还原峰电流呈线性关系,相关系数(r)为0.998 6,并检测出市售医用双氧水的平均含量为2.93%。  相似文献   

11.
采用硼氢化钠常温一步还原法制备了石墨烯/Pd纳米粒子,以此复合纳米材料修饰玻碳电极为传感界面构建了一种新型的甲醛传感器。循环伏安法和计时电流法研究显示,在碱性条件下(0.1 mol/L KOH溶液),此传感器对甲醛有较好的电催化氧化作用。甲醛在4.0×10-4~5.3×10-3mol/L浓度范围内存在良好的线性关系,相关系数R=0.9934,检出限是1.3×10-4mol/L。  相似文献   

12.
胺菊酯分子印迹电化学传感器的制备及性能   总被引:1,自引:0,他引:1  
以邻氨基酚(OAP)为单体,胺菊酯为印迹分子,采用循环伏安法在玻碳电极上电化学聚合制备了胺菊酯分子印迹敏感膜。采用场发射扫描电镜(FESEM)和电化学方法对该印迹传感器进行了表征。结果表明:分子印迹传感器敏感膜洗脱前和洗脱后在形貌结构和电化学特性方面有明显的不同。以铁氰化钾为电化学探针,利用差分脉冲法(DPV)研究了传感器的响应性能,胺菊酯浓度在10.0~100nmol·L~(-1)范围内,传感器峰电流变化(△i)与胺菊酯浓度c呈线性关系,检出限(3σ)为5.8nmol·L~(-1)该传感器的响应时间为10min,测定相对标准偏差(n=7)为2.76%,回收率在96.0%~103.0%之间。  相似文献   

13.
在丝网印刷碳电极(SPCE)表面修饰石墨烯-壳聚糖(GPCS)复合膜和CeO2-Au纳米粒子,利用CeO2-Au纳米粒子对弓形虫特异性抗原(Tg-Ag)的固定,构建了用于弓形虫IgM抗体(Tg-IgM)检测的一次性电流型免疫传感器.采用扫描电镜(SEM)和透射电镜(TEM)对该免疫传感器的修饰进行表征,利用循环伏安法(CV)、交流阻抗法(EIS)和差分脉冲伏安法(DPV)进行电化学性能检测.响应电流与Tg-IgM的浓度在7.5×10-4~24 AU mL-1的范围内呈线性相关,检测限为4.4×10-4AU mL-1.该免疫传感器具有良好的灵敏度、特异性、稳定性和重复性.与ELISA方法相比,该方法结果可靠,孵育时间短,可用于临床上Tg-IgM的检测.  相似文献   

14.
杨阳  霍文珊  周政  张琪  曾涵 《无机化学学报》2016,32(12):2117-2128
采用循环伏安法、微分脉冲伏安法、交流阻抗谱以及计时电流法等电化学方法,结合红外光谱、紫外-可见分光光度法、原子力显微镜、透射电子显微镜以及原子吸收光谱等辅助手段,表征了固定漆酶的聚苯胺-草酸钴纳米复合物的化学组成、结构和形貌,测试了纳米复合物固酶前后的导电性能的变化,研究了纳米复合物修饰电极上固定漆酶的直接电化学行为,评估了该电极的催化氧还原效能以及作为电化学传感器检测氧分子的性能。实验结果表明该电极在不含电子介体的溶液中以酶活性中心T2作为首要电子受体,将得到电子传递给化学吸附的氧气使其被电还原,其表观电子迁移速率为0.017 s~(-1),且具有良好的催化氧还原性能(氧还原起始电位:460 m V vs NHE,转化氧分子为水的表观速率常数为2.6×10-4 s~(-1)),酶电催化氧还原为水分子步骤为反应的速控步。该电极作为电化学传感器对氧具有极低检测限(0.20μmol·L~(-1)),宽线性响应范围(0.4~7.5μmol·L~(-1))以及对底物高亲和力(KM=122.4μmol·L~(-1))等优势。  相似文献   

15.
以邻苯二胺为功能单体,赛诺吗嗪为印迹分子,采用电化学聚合法在石墨烯修饰的金电极上制备了可快速测定赛诺吗嗪的分子印迹电化学传感器。考察了功能单体的选择、石墨烯修饰金电极、扫描圈数等参数对该传感器性能的影响,利用循环伏安法、差分脉冲伏安法和电化学阻抗法对该传感器进行表征。赛诺吗嗪的线性范围为6.0×10~(-9)~6.0×10~(-4) mol·L~(-1),检出限(3s/k)为1.0×10~(-9) mol·L~(-1)。加标回收率在88.0%~102%之间,测定值的相对标准偏差(n=5)在2.0%~3.5%之间。  相似文献   

16.
采用石墨烯作为电极增敏材料,制备三唑磷(TAP)分子印迹电化学传感器。采用自由基聚合法,在石墨烯修饰电极(GR/GCE)上合成分子印迹聚合物膜(MIP)。利用微分脉冲伏安法、电化学阻抗谱对不同修饰电极进行电化学表征,利用微分脉冲伏安法考察了MIP和非分子印迹聚合物膜(NIP)传感器的电化学性能。在最优实验条件下,TAP浓度在1.0×10~(-7)~2.0×10~(-5)mol·L~(-1)内和MIP膜传感器峰电流呈线性关系,检出限为4.3×10~(-8)mol·L~(-1)(S/N=3)。建立MIP膜传感器的动力学吸附模型,测得结合速率常数k为9.0580 s。  相似文献   

17.
《电化学》2016,(1)
采用原位还原法制备金纳米粒子/聚多巴胺/碳纳米管(Au-PDA-MWCNTs)复合材料,并将其用于建立高灵敏检测核黄素(RF)的电化学方法.采用紫外-可见光谱、扫描电镜、X-射线能谱对Au-PDA-MWCNTs复合材料进行表征,采用循环伏安法和差示脉冲伏安法探讨核黄素在Au-PDA-MWCNTs修饰的玻碳电极上的电化学行为,并对RF含量进行测定.该方法对核黄素的检测在5×10~(-9)~1×10~(-5)mol·L~(-1)范围内呈良好线性关系(R=0.9906),检测限为1.7×10~(-9)mol·L~(-1).方法操作简便、抗干扰能力强,并成功实现了维生素药片中RF含量的测定.  相似文献   

18.
采用微波辅助加热多元醇技术制备了载铂多壁碳纳米管复合材料,并将该复合材料分散在N,N′-二甲基甲酰胺溶液中得到悬浮液,取14μL悬浮液滴涂在玻碳电极表面,制备铂/多壁碳纳米管修饰电极(Pt/MWCNT′s/GCE)。循环伏安法研究了在0.05mol·L~(-1)硫酸支持电解质中,在0.30~0.70V(vs.SCE)电位范围内,左旋多巴在修饰电极上的电化学行为,结果表明:左旋多巴在Pt/MWCNT′s/GCE上于电位0.548V处可见明显的氧化峰,且氧化峰电流显著高于在MWCNT′s/GCE和裸玻碳电极上的氧化峰电流。提出了用微分脉冲伏安法测定左旋多巴的方法。左旋多巴的浓度在8.0×10~(-6)~2.0×10~(-1)mol·L~(-1)范围内与其氧化峰电流呈线性关系,检出限(3S/N)为1.9×10~(-6)mol·L~(-1),平均回收率为102.8%。  相似文献   

19.
该工作通过电化学方法在多壁碳纳米管修饰的玻碳电极表面得到聚邻氨基苯酚分子印迹聚合物膜,制备了可以选择性识别双酚A的分子印迹电化学传感器。通过扫描电镜、循环伏安法以及差分脉冲法对传感器的表面形貌和电化学性能进行了表征,并对传感器的检测条件进行了优化。采用K_3[Fe(CN)_6]作为电化学探针,在选定的实验条件下,K_3[Fe(CN)_6]在印迹电极上的峰电流变化值与双酚A的浓度在1×10~(-10)-4×10~(-8) mol·L~(-1)呈良好线性,本方法测定双酚A的检测限为4×1 0 ~(-11) mol·L~(-1),将该传感器用于实际水样中双酚A的测定,结果令人满意。  相似文献   

20.
采用纳米普鲁士蓝/金纳米粒子/壳聚糖(nano-PB/AuNPs/Chit)复合膜固定葡萄糖氧化酶(GOD)构建新型葡萄糖生物传感器。通过电化学阻抗谱以及电流-时间曲线法(I-t)研究了传感器的电化学特性。结果表明,传感器在葡萄糖浓度为0.01~1.0 mmol/L范围内呈线性,响应灵敏度为68.15μA.(mmol/L)-1.cm-2,表观米氏常数为5.1 mmol/L。该传感器可用于糖尿病人血糖的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号