首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
近年来,钙钛矿太阳能电池由于其效率高、制造成本低、工艺简单等特点受到广泛关注,成为目前太阳能电池领域的研究热点。在钙钛矿太阳能电池中,无机-有机杂化ABX3材料非常重要。它既作为光吸收材料,同时又作为载流子传输材料,因此它的光电性质直接影响到太阳能电池的效率。本文综述了调控钙钛矿型无机有机金属卤化物ABX3结构和性质的几种途径。  相似文献   

2.
贺凤龙  王苹  黄彦民 《无机化学学报》2015,31(11):2174-2180
以空心球状TiO2为基体、以片状TiO2为骨架,采用刮刀法制备了染料敏化太阳能电池的多孔TiO2光阳极薄膜。光电转化效率测试结果表明,当作为骨架支撑材料的片状TiO2含量为20wt%时,光阳极薄膜组装成太阳能电池的光电转化效率达到最高值4.53%,比商业P25制备的无孔无骨架TiO2薄膜电池(4.06%)及无骨架结构的多孔TiO2薄膜电池(4.17%)的性能均有显著提高。当片状TiO2的最佳含量为20wt%电池薄膜厚度为33μm时,太阳能电池光电转化效率进一步提升为7.06%。光电性能增强的原因是骨架结构有利于快速传输电子并增大染料吸附量。本研究通过设计制备具有骨架结构的多孔TiO2薄膜为提高染料敏化太阳能电池性能提供了新的思路。  相似文献   

3.
以空心球状TiO2为基体、以片状TiO2为骨架,采用刮刀法制备了染料敏化太阳能电池的多孔TiO2光阳极薄膜。光电转化效率测试结果表明,当作为骨架支撑材料的片状TiO2含量为20wt%时,光阳极薄膜组装成太阳能电池的光电转化效率达到最高值4.53%,比商业P25制备的无孔无骨架TiO2薄膜电池(4.06%)及无骨架结构的多孔TiO2薄膜电池(4.17%)的性能均有显著提高。当片状TiO2的最佳含量为20wt%电池薄膜厚度为33 μm时,太阳能电池光电转化效率进一步提升为7.06%。光电性能增强的原因是骨架结构有利于快速传输电子并增大染料吸附量。本研究通过设计制备具有骨架结构的多孔TiO2薄膜为提高染料敏化太阳能电池性能提供了新的思路。  相似文献   

4.
基于p型光电极的染料敏化太阳能电池是一种受到广泛关注的新型太阳能电池。根据电池的结构不同可以将其分为p型和p-n叠层型染料敏化太阳能电池。其中p-n型叠层染料敏化太阳能电池的理论光电效率可以达到43%,高于传统的基于n型TiO2光阳极的染料敏化太阳能电池理论效率(30%),引起了科学界的高度关注。本文将总结基于p型光电极染料敏化太阳能电池(p型和p-n型叠层器件)的研究成果,重点介绍用于p型和p-n型叠层染料敏化太阳能电池的电极材料,染料及电解质的研究进展;同时总结目前该类电池发展中亟需解决的问题以及进一步提高器件效率的途径。  相似文献   

5.
卤化钙钛矿由于具有低成本、高效率等特点,最近作为非常有前景的太阳能电池吸收层材料被广泛研究。卤化钙钛矿型太阳能电池效率在短短的几年间由3.8%(2009年)迅速增加到22.1%(2016年)。卤化钙钛矿型太阳能电池的出现彻底改变了太阳能电池领域,不仅因为它们快速增长的效率,而且因为它们在材料生长和结构方面的可控性。卤化钙钛矿型太阳能电池的优越性能说明卤化钙钛矿材料具有独特的物理性质。在本综述中,我们总结了卤化钙钛矿材料最近几年在结构、电学、光学方面的理论研究成果,这些都与它们在太阳能电池方面的应用密切相关。我们也将探讨一些卤化钙钛矿型太阳能电池目前遇到的挑战以及可能的理论解决途径。  相似文献   

6.
以四氯化钛、盐酸为原料,制备出花状TiO2纳米微球,利用扫描电子显微镜(SEM)、X射线衍射(XRD)等测试方法,对样品的结构和形貌进行了表征。为了提高TiO2微球电池的光电性能,利用TiO2微球作为反射层构造了双层结构的薄膜电极,结果表明,双层结构染料敏化太阳能电池在100 mW·cm-2(1.5 G)光照条件下,短路光电流Jsc为17.64 mA·cm-2,开路光电压Voc为0.74 V,填充因子FF为0.63和光电转化效率η为8.33%。相比TiO2微球制备的太阳能电池,双层结构染料敏化太阳能电池光电转化效率提高至5.3倍。最后对电极中染料的吸附量、电极的光散射性能和电池的电化学阻抗做了进一步研究和分析,研究表明,双层结构电池增强光的捕获能力,从而提高光伏性能。  相似文献   

7.
近年来全无机CsPbX3(X=Cl、Br、I)型钙钛矿材料由于其高吸光系数、低激子束缚能、长的载流子扩散长度等优点使其在太阳能电池(PSC)器件应用方面备受关注。高效的合成方法和精准的形貌控制对无机钙钛矿的光学性质及其太阳能电池光电性能及稳定性至关重要。本文系统介绍了不同维度无机钙钛矿材料包括零维量子点、一维纳米线/棒、二维纳米片和三维纳米花的现有合成方法;比较了各种合成方法的优势;着重介绍了不同维度无机钙钛矿材料的形貌调控手段,光学性质及相应太阳能电池光电性能的优化策略;最后展望了全无机钙钛矿朝着无害化和高性能钙钛矿太阳能电池的应用前景。  相似文献   

8.
经过短短十年的发展,钙钛矿太阳能电池效率已经超过25%,极具商业化价值,这得益于三维(3D)钙钛矿材料具有合适的带隙、吸光系数高、电子迁移距离长等优点。但3D钙钛矿的稳定性依然是其亟待解决的问题。二维(2D)钙钛矿器件除了兼具3D钙钛矿的优异光电性质之外,其稳定性良好,是解决3D钙钛矿太阳能电池稳定性问题的一个可行方案。2D钙钛矿晶格中的疏水性大烷基胺阳离子能阻止湿气侵入的可能路径,使其成为光电器件的备选材料。由于2D钙钛矿对许多不同的有机和无机成分具有较高的耐受性,使其组成具有多样性,进而影响其能带变化。本文对2D钙钛矿的带隙调控及能带调控进行总结,希望对制备高效、稳定的低维度钙钛矿太阳能电池具有一定的指导意义。  相似文献   

9.
Kai WU 《物理化学学报》2017,33(9):1728-1729
正有机金属卤化物钙钛矿材料具有可调的直接带隙、高摩尔吸光系数和高载流子迁移率等优异的光电性质~1。基于该类钙钛矿材料的太阳能电池经过短短几年的发展,其能量转换效率几乎能够和传统晶体硅太阳能电池的效率相媲美~2。因此,钙钛矿太阳能电池被研究者们寄予厚望。在电池制备过程中所形成的钙钛矿多晶薄膜往往具有大量的晶界,处于晶界中配位不饱和的卤离子和金属离子会诱导缺陷态的形成~3,从而大  相似文献   

10.
王蕾  周勤  黄禹琼  张宝  冯亚青 《化学进展》2020,32(1):119-132
近年来,新兴起的有机无机杂化钙钛矿太阳能电池突飞猛进,在短短十年里其光电转化效率从3.8%迅速发展到目前25.2%的认证效率,被视为最具有应用潜力的新型高效率太阳能电池之一。虽然钙钛矿太阳能电池具有很高的光电转换效率已与多晶硅薄膜电池相媲美,但是电池的长期稳定性仍是阻碍其商业化的一大挑战。钙钛矿表面和晶界存在大量的缺陷,界面钝化来提高钙钛矿太阳能电池的稳定性是非常重要且有效的策略。二维钙钛矿材料是有机胺层与无机层交替的层状钙钛矿,具有体积较大的有机铵阳离子,与传统的三维钙钛矿材料相比对于环境的稳定性较好,并且结构灵活可调,在三维钙钛矿表面修饰二维钙钛矿层钝化缺陷,在提高钙钛矿太阳能电池效率的同时又保证了稳定性,另外,合适的钝化剂分子也能够非常有效地钝化缺陷。本文总结了钙钛矿太阳能电池的不稳定因素,归纳了钙钛矿太阳能电池界面钝化方面的研究进展,指出了二维钙钛矿材料发展的巨大潜力以及寻找合适钝化剂分子的原则,期望能够为获得高性能的钙钛矿太阳能电池进而实现商业化提供有益的指导。  相似文献   

11.
The possible exhaustion of fossil fuels in the near future and soaring global energy demand have driven the search for new types of sustainable and renewable alternatives. Perovskite (CH3NH3PbX3, X = I, Br, Cl) solar cells are a type of solar cell based on a perovskite absorber, most commonly a tin halide-based or hybrid organic–inorganic lead material, as the visible-light sensitizer layer, which produces electricity from sunlight. Recently, perovskite solar cells have received substantial worldwide attention. Compared with traditional solar cells, the perovskite solar cells can obtain high efficiency with a simple architecture and via a cost-effective process. In the latest 5 years, the efficiency of perovskite solar cells to convert power has skyrocketed from 3.8 % to more than 19.3 %. It is the fastest advancing solar technology to date. The highest efficiency demonstrated by perovskite solar cells is higher than that of dye-sensitized solar cells (DSSCs). A lager number of research groups have demonstrated that perovskite solar cells may ultimately boost efficiency as high as 25 %. The high efficiency and cheap production costs make it evident that perovskite solar cells have great potential to be commercialized soon. In this review, the history, materials, processing and architecture of solar cells are discussed to obtain a better understanding of high-performance perovskite solar cells.  相似文献   

12.
Organic–inorganic hybrid perovskites, with the formula ABX3 (A=organic cation, B=metal cation, and X=halide; for example, CH3NH3PbI3), have diverse and intriguing physical properties, such as semiconduction, phase transitions, and optical properties. Herein, a new ABX3‐type semiconducting perovskite‐like hybrid, (hexamethyleneimine)PbBr3 ( 1 ), consisting of one‐dimensional inorganic frameworks and cyclic organic cations, is reported. Notably, the inorganic moiety of 1 adopts a perovskite‐like architecture and forms infinite columns composed of face‐sharing PbBr6 octahedra. Strikingly, the organic cation exhibits a highly flexible molecular configuration, which triggers an above‐room‐temperature phase transition, at Tc=338.8 K; this is confirmed by differential scanning calorimetry (DSC), specific heat capacity (Cp), and dielectric measurements. Further structural analysis reveals that the phase transition originates from the molecular configurational distortion of the organic cations coupled with small‐angle reorientation of the PbBr6 octahedra inside the inorganic components. Moreover, temperature‐dependent conductivity and UV/Vis absorption measurements reveal that 1 also displays semiconducting behavior below Tc. It is believed that this work will pave a potential way to design multifeatured perovskite hybrids by utilizing cyclic organic amines.  相似文献   

13.
Since the first perovskite CaTiO3 was discovered in 1839, the development of perovskite has a history of 180 years. The emergence of solar cells (CH3NH3)PbI3 has set off the trend of hybrid organic–inorganic perovskite (HOIP) materials. Since then, various HOIPs have sprung up and been widely used in various material devices. Among them, HOIP ferroelectrics have gained widespread attention. However, antiperovskite, as a twin brother of perovskite, has been neglected although it has similar structure with perovskite. Here, we successfully found that [C3H7FN]3[SnCl6]Cl has a three-dimensional (3D) antiperovskite structure with the formula M3AB. Importantly, the compound exhibits obvious ferroelectric properties with an Aizu notation of 622F6 at 391 K. To the best of our knowledge, this is the first 3D hybrid organic–inorganic antiperovskite ferroelectric, which will greatly promote the development of antiperovskite families with more superior physical properties.  相似文献   

14.
Ternary hybrid perovskite solid solutions have shown superior optoelectronic properties and better stability than their ABX3 simple perovskite counterparts under ambient conditions. However, crystal growth and identification of the accurate composition of these complex crystalline compounds remain challenging, and their stability under extreme conditions such as in highly moist atmosphere is unknown. Herein, large-size (up to 2 cm) single crystals of ternary perovskite 0.80FAPbI3 ⋅ x′FAPbBr3 ⋅ y′CsPbI3 (x′+y′=0.20) are grown. An elemental analysis method based on wavelength dispersive X-ray fluorescence is proposed to determine their accurate compositions. Among these single crystals, the composition with y′=0.12 shows the best moisture stability at 90 % relative humidity for 15 days. Other components with richer or poorer Cs+ ions undergo different phase segregation behaviours. The performance and stability of photodetectors based on these single crystals are tested. This work offers a deeper insight into phase stability of ternary hybrid perovskite solid solution crystals in highly moist atmosphere.  相似文献   

15.
The long-term stability remains one of the main challenges for the commercialization of the rapidly developing hybrid organic-inorganic perovskite solar cells. Herein, we investigate the electronic and optical properties of the recently reported hybrid halide perovskite (CH2)2NH2PbI3 (AZPbI3), which exhibits a much better stability than the popular halide perovskites CH3NH3PbI3 and HC(NH2)2PbI3, by using density functional theory (DFT). We find that AZPbI3 possesses a band gap of 1.31 eV, ideal for single-junction solar cells, and its optical absorption is comparable with those of the popular CH3NH3PbI3 and HC(NH2)2PbI3 materials in the whole visible-light region. In addition, the conductivity of AZPbI3 can be tuned from efficient p-type to n-type, depending on the growth conditions. Besides, the charge-carrier mobilities and lifetimes are unlikely hampered by deep transition energy levels, which have higher formation energies in AZPbI3 according to our calculations. Overall, we suggest that the perovskite AZPbI3 is an excellent candidate as a stable high-performance photovoltaic absorber material.  相似文献   

16.
Host-guest complexation has demonstrated potential for controlling hybrid organic-inorganic metal halide perovskite materials. In particular, crown ethers have been used due to their capacity to interact with metal cations (e. g., Pb2+) and small organic cations (e. g., methylammonium (MA)), which can affect hybrid perovskite materials and their solar cells. However, this strategy has been underexploited in perovskite photovoltaics, and the underlying mechanisms are not well understood. In this study, we investigate the influence of 15-crown-5 ( 15C5 ) and its benzannulated derivative (benzo-15-crown-5, B15C5 ), as well as amino-functionalized analogues (15-crown-5)-2-methylamine, 2A-15C5 , and 4′-aminobenzo-15-crown-5, 4A-B15C5 , on MAPbI3 perovskite crystallization and inverted solar cell performance. We demonstrate the propensity of crown ether modulators to interact with Pb2+ cations at the perovskite interface by density functional theory calculations. This has been shown to facilitate oriented crystal growth and homogeneous film formation, as revealed by X-ray diffraction analysis complemented by scanning electron microscopy. As a result, we demonstrate an increase in the power conversion efficiency of the solar cells of interest to advancing hybrid photovoltaics.  相似文献   

17.
《中国化学快报》2021,32(11):3558-3561
Material stability is always the key factor for applied materials especially the working environment that requires higher temperature sensitivity or temperature fluctuation range. In which, the stimulus-response perovskite materials are just sensitive to stability to ensure the accuracy and stability of the signals, in the applied devices of batteries and memory storage devices and so on. However, it is still a tremendous challenge to improve the stability of perovskite materials, and maintain reliability in the devices. Here, a novel ABX2X'1 (X-site doping in an ABX3) compound [CEMP]-[CdBr2(SCN)] (1, CEMP = 1-(2-chloro-ethyl)-1-methyl-piperidine) with remarkable high-temperature reversible dielectric switching behavior was proposed. The strategy of [SCN]doping in perovskite for improving the stability was successfully achieved. Meanwhile, the steric hindrance is increased while the energy barrier is also increased by replacing hydrogen with flexible groups, which leads to a high-temperature reversible phase transition. The new finding provides a new direction to enrich new applications and design ideas of perovskite materials. Especially the X-site strategy of doping or substitution in the ABX3, it will promote ingenious and perfect experimental results in material synthesis and performance improvement by chemistry disciplines.  相似文献   

18.
Methylammonium lead iodide perovskite (MAPbI3), a prototype material for potentially high‐efficient and low‐cost organic–inorganic hybrid perovskite solar cells, has been investigated intensively in recent years. A study of low‐energy electron‐induced transformations in MAPbI3 is presented, performed by combining controlled electron‐impact irradiation with X‐ray photoelectron spectroscopy and scanning electron microscopy. Changes were observed in both the elemental composition and the morphology of irradiated MAPbI3 thin films as a function of the electron fluence for incident energies from 4.5 to 60 eV. The results show that low‐energy electrons can affect structural and chemical properties of MAPbI3. It is proposed that the transformations are triggered by the interactions with the organic part of the material (methylammonium), resulting in the MAPbI3 decomposition and aggregation of the hydrocarbon layer.  相似文献   

19.
A comprehensive study was performed for the design of ABX3 perovskites, (A = Li, K, Na, B = Ge, Sn, Pb, X = F, Cl, Br, I) and organic hole transfer materials, HTMs (Fu-2a, Fu-2b, Fu-2c, and Dm-Q) for efficient perovskite solar cells (PSCs) through quantum chemistry calculations. Photovoltaic characteristics of the investigated perovskites are strongly affected by the halide anions. The results reveal that reducing the exciton binding energy of perovskites enhances the rate of the formation/dissociation of holes and electrons so F-based perovskites are superior from this viewpoint. Additionally, the electron and hole injection processes are more favorable in the case of the F-based perovskites in comparison with other studied perovskites. Moreover, spectroscopic properties of the perovskites demonstrate that KSnCl3, NaSnCl3, and F-based perovskites exhibit a greater ability of the light-harvesting and incident photon to current conversion efficiency. Ultimately, based on diverse analyses, F-based perovskites, KSnCl3 and NaSnCl3 are the preferred candidates to be applied in the PSCs due to an excellent incident photon to current conversion efficiency, light-harvesting efficiency, short circuit current, and solar cell final efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号