首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Liquid crystals》1998,24(2):247-253
A series of ferroelectric liquid crystals (FLCs), 4 (3-methyl-2-halopentanoyloxy)- 4-hexyloxybiphenyls (3M2XPHOB, X=F for fluorine, C for chlorine, B for bromine) and their racemates (3M2XPHOB-R), were synthesized and characterized. The FLCs contain a chiral tail comprised of alpha -halo acids which are derived from L-isoleucine (DL-isoleucine for the racemates). The mesogens were characterized by high-resolution 1H and 13C NMR and their phase behaviour was studied by optical microscopy and differential scanning calorimetry. The chloro and bromo derivatives show both chiral smectic C (SmC*) phases and smectic A (SmA) phases, while the fluoro derivatives exhibit only a SmA phase. The spontaneous polarization of 3M2CPHOB and 3M2BPHOB were measured in the respective SmC* phases; that of the fluoro derivative was inferred by extrapolating its concentration dependent polarization in an achiral SmC solvent, a racemic mixture of 3M2BPHOB.  相似文献   

2.
A new series of non-symmetric chiral isoflavone-based liquid crystalline dimers, α-(2-methylbutyl-4′-(4″-phenyloxy)benzoate)-ω-(3-(4′-decyloxyphenyl)-4H-1-benzopyran-4-one-7-oxy)alkanes, with 3–12 carbon atoms in the alkyloxy spacer, have been synthesised. A pronounced odd–even effect for the phase transition temperatures upon varying the spacer length was observed. The short dimers exhibited monolayer smectic A (SmA) and smectic C (SmC*) phases while for longer homologues a chiral nematic (N*) phase was found. The temperature range of the nematic phase was broadened with elongation of the alkyl spacer. Stabilisation of the nematic phase resulted from competition between the monolayer and intercalated smectic structures. The SmA–SmC* phase transition was second order for all studied compounds with a cross over to the de Vries type behaviour for the shortest homologue.  相似文献   

3.
Three series of chiral liquid crystalline dimers were investigated, having a cholesteryl and a cyanobiphenylyl, butoxybiphenylyl or hexyloxybiphenylyl group connected to a variable alkyl spacer through ether linkages. Their properties were compared with those of the corresponding ester derivatives. The phase behaviour of compounds with ether and ester linkages is comparable, showing N* and SmA phases. The melting points of the compounds with ether linkages are in the same range as those of the ester compounds, but the liquid crystal transition temperatures are lower. The smectic layer spacings and smectic ordering properties are also similar. The cyanobiphenylyl compounds have an interdigitated SmA layer structure, which shows a small odd-even effect with spacer parity. The alkoxybiphenylyl compounds have a monolayer SmA phase for short spacers and an intercalated SmA phase for longer spacers. The selective reflection wavelengths of the chiral nematic phase of the ether compounds are lower than those of the corresponding ester compounds. The transition from N* to interdigitated or monolayer SmA is accompanied by a strong increase in the selective reflection wavelength, indicative of an intermediate TGB phase. This is absent for the transition from N* to intercalated SmA.  相似文献   

4.
Three series of chiral liquid crystalline dimers were investigated, having a cholesteryl and a cyanobiphenylyl, butoxybiphenylyl or hexyloxybiphenylyl group connected to a variable alkyl spacer through ether linkages. Their properties were compared with those of the corresponding ester derivatives. The phase behaviour of compounds with ether and ester linkages is comparable, showing N* and SmA phases. The melting points of the compounds with ether linkages are in the same range as those of the ester compounds, but the liquid crystal transition temperatures are lower. The smectic layer spacings and smectic ordering properties are also similar. The cyanobiphenylyl compounds have an interdigitated SmA layer structure, which shows a small odd–even effect with spacer parity. The alkoxybiphenylyl compounds have a monolayer SmA phase for short spacers and an intercalated SmA phase for longer spacers. The selective reflection wavelengths of the chiral nematic phase of the ether compounds are lower than those of the corresponding ester compounds. The transition from N* to interdigitated or monolayer SmA is accompanied by a strong increase in the selective reflection wavelength, indicative of an intermediate TGB phase. This is absent for the transition from N* to intercalated SmA.  相似文献   

5.
Novel liquid crystals containing a siloxy chain as an end tail group instead of an alkyl chain were synthesized. The substitution effects were studied for ferroelectric liquid crystal materials. It was found that the temperature range for the chiral smectic C phase was reduced and shifted to lower temperature in comparison with the analogous alkyl chain derivatives. The crystallinity of the siloxy chain derivatives decreased and cholesteric phases were not observed. The influence of siloxy chains on ferroelectric liquid crystal properties, especially spontaneous polarizations and tilt angles, also greatly depended upon the mesogenic group structure. The X-ray diffraction results showed that the end tail group occupied a larger thickness in the chiral smectic C layer for the siloxy chain derivative than that for the alkyl chain derivative.  相似文献   

6.
The mesogenic properties of a family of chiral liquid crystal (LC) diacrylates based on a 4-[4-(1R-methyl-2-hydroxyethoxy)phenyl]phenyl 4-hydroxybenzoate core were studied as a function of different tail lengths. In general, this family of LCs was found to exhibit a strong preference for adopting the chiral smectic A phase. Systematic variation of the alkyl spacer lengths on either side of the chiral core revealed that the onset of smectic A behaviour is highly sensitive to the length of the tail adjacent to the chiral unit. However, no correlation between phase transition temperatures and the length of the spacer on the other side of the core was observed. With a fixed spacer length on the chiral side of the core, systematic changes in the length of the other tail resulted in the formation of a monotropic smectic B phase and an increased tendency to supercool.  相似文献   

7.
Two series of new liquid crystalline lactic acid derivatives with a terminal ester group have been synthesised. The effect of this ester unit and the length of its alkyl chain on the mesomorphic and dielectric properties of the compounds exhibiting a broad temperature range of chiral smectic phases have been studied. We found that the mesomorphic behaviour and phase transition temperatures are strongly affected by the molecular architecture. Depending on the alkyl chain length in the terminal ester unit, the studied materials exhibited paraelectric smectic A*, ferroelectric tilted smectic C* and antiferroelectric smectic CA* phases over a broad temperature range. The physical properties of the compounds have been studied by optical polarising microscopy, differential scanning calorimetry, electro-optic measurements, small-angle X-ray scattering and dielectric spectroscopy. Furthermore, the homologues with short terminal alkyl chains showed a very small layer shrinkage at the transition from the orthogonal SmA* to the tilted SmC* phase, which is a characteristic feature of ‘de Vries-type’ behaviour.  相似文献   

8.
《Liquid crystals》2000,27(10):1317-1323
The mesogenic properties of a family of chiral liquid crystal (LC) diacrylates based on a 4-[4-(1R-methyl-2-hydroxyethoxy)phenyl]phenyl 4-hydroxybenzoate core were studied as a function of different tail lengths. In general, this family of LCs was found to exhibit a strong preference for adopting the chiral smectic A phase. Systematic variation of the alkyl spacer lengths on either side of the chiral core revealed that the onset of smectic A behaviour is highly sensitive to the length of the tail adjacent to the chiral unit. However, no correlation between phase transition temperatures and the length of the spacer on the other side of the core was observed. With a fixed spacer length on the chiral side of the core, systematic changes in the length of the other tail resulted in the formation of a monotropic smectic B phase and an increased tendency to supercool.  相似文献   

9.
The light switching characteristics induced by a thermal smectic A (SmA) ? chiral nematic (N*) phase transition were studied for homeotropically aligned [smectic A liquid crystal (SmA-LC)/nematic liquid crystal (N-LC)/chiral dopant] and [side chain type smectic A liquid crystalline polymer (SmA-LCP)/N-LC/chiral dopant] composites. A drastic change from a transparent SmA phase to a light-scattering N* phase occurred in both composites upon heating. In the case of the heat-induced N* phase for the (SmA-LC/N-LC/chiral dopant) composite, the N* phase exhibited weak light scattering due to formation of a scroll texture. On the other hand, in the case of the heat-induced N* phase for the (SmA-LCP/N-LC/chiral dopant) composite, the N* phase showed strong light scattering due to formation of a focalconic texture. The existence of a SmA-LCP was responsible for a higher contrast ratio between the transparent SmA phase and the light scattering N* phase for the (SmA-LCP/ N-LC/chiral dopant) composite than for the (SA-LCN/N-LC/chiral dopant) composite.  相似文献   

10.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n -butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N * ) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC * ) mesophase. The metal complexes with n -butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N * phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C * phase of the two ligands.  相似文献   

11.
A series of 4,4?-dialkoxy-3,3?-diaminobiphenyl compounds were synthesised by three-step procedure that involves alkylation, nitration and reduction reactions. Their chemical structures were characterised by FTIR, 1H and 13C spectroscopy and elemental analysis. Their thermotropic liquid–crystalline (LC) properties were examined by a number of experimental techniques including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarising optical microscopy (POM) and variable temperature X-ray diffraction (VT-XRD). The 4,4?-dialkoxy-3,3?-dinitrobipheyl compounds, precursors to the diamine compounds, were also examined for their thermotropic LC properties. POM studies of focal conic textures and VT-XRD of the 3,3?-diaminobiphenyl derivatives having flexible alkyl chains (C6–C12) exhibited the smectic A (SmA) phase independent of the length of alkyl chains. Similarly, the 3,3?-dinitrobiphenyl derivatives containing alkyl chains C7, and C9–C11 exhibit the SmA phase, those containing C8 formed the smectic C (SmC) phase and C12 formed both the SmA and smectic B (SmB) phases, respectively. The 3,3?-diaminobiphenyl derivatives had excellent thermal stability in the temperature range of 237–329°C, while those of 3,3?-dinitrobiphenyl derivatives were in the temperature range of 270–321°C. The 3,3?-diaminobiphenyl derivatives emitted UV light both in chloroform and acetonitrile.  相似文献   

12.
A chiral random grain boundary (RGB) phase was recently observed in a hockey-stick biphenyl-substituted 1,3,4-oxadiazole derivative. In the RGB phase, achiral molecules self-assemble into randomly oriented blocks of chiral smectic layers and the motif of the unique microstructure is attributed to the similarity of hockey-stick molecules both to bent-core and to rod-like molecules. In order to explore the effect of molecular structure on the RGB phase in detail, we systematically change the molecular design. When the flexible tail decreases, the high-temperature Smectic A (SmA) phase is replaced by a nematic phase, showing a phase sequence of Iso-N-SmA-RGB-Cryst in 2-(4-dodecyloxyphenyl)-5-biphenyl-1,3,4-oxadiazole. However, when we replace the 1,3,4-oxadiazole group by the 1,3,4-thiadiazole group, the bending angle increases in the 1,3,4-thiadiazole derivatives and the RGB phase disappears. Or when the length of the arm becomes short in naphthalene-substituted 1,3,4-oxadiazole, these molecules exhibited only normal rod-like molecules’ mesomorphism. These results will provide deep insights on the relationship of molecular structure and mesophase structural property.  相似文献   

13.
本文设计合成了十个含氟烷基边链和手性中心的液晶化合物,并通过DSC和偏光显微镜对它们的液晶性进行了研究。其中二环系液晶化合物不显示液晶相或仅显示单边近晶A相。三环系液晶化合物中较长的氟烷基边链有利于近晶相的形成,且当液晶核另一端的烷氧基链的长度适中时,在氟烷基边链和液晶核之间具有手性中心的液晶分子显示了手性近晶C相和其它液晶相。  相似文献   

14.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

15.
A new series of materials with a chiral fragment derived from lactic acid and a methoxy group as lateral substituent in different positions of the molecular core was synthesised and investigated. Derivatives with ester or ether linkages of the non‐chiral chain were also studied. Depending on the molecular structure, cholesteric, twist grain boundary smectic A (TGBA*), chiral smectic A (SmA*) or chiral smectic C (SmC*) phases were detected. In derivatives with the ester linkage and a methoxy group at the nearest and the next nearest phenyl ring to the non‐chiral chain these phases completely disappear. On the other hand, a methoxy group on the phenyl ring close to the chiral chain provides a compound with low layer shrinkage at the SmA*–SmC* phase transition (“de Vries” behaviour). The temperature dependence of the spontaneous polarisation, the tilt angle, the layer spacing as well as the complex permittivity were studied and the results discussed in terms of molecular structure.  相似文献   

16.
Compounds with differing numbers of lactate units in the chiral part were synthesized. For all materials, at least two smectic phases were found. In addition to the SmA, the SmC* and/or the tilted hexatic SmI*(F*) phase appear according to the length of the non-chiral alkyl chain. For the shortest non-chiral chain, a direct transition from the SmA phase to the SmI*(F*) phase has been discovered and studied. For compounds with the 2-(S)-methylbutyl alkyl chain and two lactate units in the chiral part the antiferroelectric SmC*A phase occurs. The ferroelectric character of the hexatic phase has been confirmed even just below the SmC*A phase.  相似文献   

17.
New series of lactic acid derivatives with alkyl terminal chain have been synthesised and their mesomorphic properties studied. We have varied the length of chiral and non-chiral terminal alkyl chains and found that prolonging both chains has a strong effect on the SmA*–SmC* phase transition. Most of the new materials exhibit only paraelectric SmA* phase; for homologues with a longer non-chiral chain (m ≥ 10), the ferroelectric (SmC*) phase appears below the SmA* on cooling and persists down to a room temperature. The role of the chiral terminal chain in the molecule is quite opposite – only its short length supports the existence of ferroelectric phase. Additionally, a hexatic phase appeared below the SmA*–SmC* phase sequence for several homologues at low temperatures. All materials have been studied using standard experimental techniques (differential scanning calorimetry (DSC), texture observations, polarisation and tilt angle measurements, etc.). Liquid crystalline properties of new materials have been compared with the previously prepared and studied lactic acid derivatives.  相似文献   

18.
We studied the electro-optic and dielectric properties of three pure ferroelectric liquid crystal materials (C10, C11 and C12) of the same series exhibiting cholesteric (N*), smectic A (SmA) and chiral smectic C (SmC*) phases. From electro-optic investigations, the tilt angle and spontaneous polarisation were determined as a function of temperature. In the dielectric measurements carried out without a dc bias field, we studied the soft-mode relaxation in the SmA phase. From experimental data and using the results of a Landau model, we evaluated the soft-mode rotational viscosity and the electroclinic coefficient in the SmA phase. A soft-mode like mechanism was also observed in the N* phase for compounds with shorter chains (C10 and C11). This relaxation process is not detected for the homologue with a longer chain (C12). The observation of this mechanism is related to smectic order fluctuations within N* phase whose amplitude is increased when approaching the SmC*–SmA–N* multicritical point.  相似文献   

19.
Recently, new thermotropic ionic liquid crystals (LCs) with a hexyl-linked tris(imidazolium bromide) core and two terminal alkyl chains were synthesised and characterised. To explore the effect of different counter-ions on the LC behaviour of this system, derivatives with BF4? and Tf2N? counter-ions were prepared and analysed. Five of the BF4? derivatives were found to exhibit thermotropic LC behaviour. The 12-, 14- and 16-carbon tail BF4? compounds form SmA phases. The 18- and 20-carbon tail homologues form what appears to be a smectic phase but are weakly mesogenic and harder to characterise. Only two of the Tf2N? derivatives exhibited mesogenic behaviour. The 18-carbon tail Tf2N? compound forms an as-yet unidentified, highly periodic smectic phase with positional order while the 20-carbon tail homologue forms a periodic SmA phase. The Tf2N? mesogens have much lower clearing points even though their LC phases have more order than the Br? and BF4? mesogens. X-ray diffraction showed that these mesogens have different amounts of tail interdigitation between the smectic layers depending on the counter-ion present. Atomistic molecular dynamics simulations indicated that counter-ion size plays an important role in defining the density of the ionic region, which in turn affects the amount of interdigitation in the smectic phases.  相似文献   

20.
Compounds with differing numbers of lactate units in the chiral part were synthesized. For all materials, at least two smectic phases were found. In addition to the SmA, the SmC* and/or the tilted hexatic SmI*(F*) phase appear according to the length of the non-chiral alkyl chain. For the shortest non-chiral chain, a direct transition from the SmA phase to the SmI*(F*) phase has been discovered and studied. For compounds with the 2-(S)-methylbutyl alkyl chain and two lactate units in the chiral part the antiferroelectric SmC*A phase occurs. The ferroelectric character of the hexatic phase has been confirmed even just below the SmC*A phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号