首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Living radical polymerizations of diisopropyl fumarate (DiPF) are carried out to synthesize poly(diisopropyl fumarate) (PDiPF) as a rigid poly(substituted methylene) and its block copolymers combined with a flexible polyacrylate segment. Reversible addition‐fragmentation chain transfer (RAFT) polymerization is suitable to obtain a high‐molecular‐weight PDiPF with well‐controlled molecular weight, molecular weight distribution, and chain‐end structures, while organotellurium‐mediated living radical polymerization (TERP) and reversible chain transfer catalyzed polymerization (RTCP) give PDiPF with controlled chain structures under limited polymerization conditions. In contrast, controlled polymerization for the production of high‐molecular‐weight and well‐defined PDiPF is not achieved by atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP). The block copolymers consisting of rigid poly(substituted methylene) and flexible polyacrylate segments are synthesized by the RAFT polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2136–2147  相似文献   

2.
Homo and copolymers were synthesized from enantionpure (R)‐ and (S)‐1‐(4‐vinylphenyl)ethanol by reversible addition‐fragmentation chain transfer polymerization. The polymerization conditions were optimized resulting in dioxane as the preferred reaction solvent. First‐order polymerization kinetics and well‐defined enantiopure homopolymers with low dispersities were obtained. In agreement with their enantiomeric composition, the (R) and (S)polymers gave opposite optical rotation of light. Polymer analogous esterification of the chiral hydroxy groups catalyzed by enantioselective Candida antarctica Lipase B was strongly (R)‐selective. Esterification on the homopolymer and copolymers could be achieved to a maximum of around 50 %. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

3.
Radical polymerization of cyclic analogs of acrylates, (S)‐ and (R)‐2‐isopropyl‐5‐methylene‐1,3‐dioxolan‐4‐ones ( 1S and 1R ), successfully afforded a functional polymer having the tacticity continuously controlled from 29% to ∼100% of meso triad (mm) over a wide range of temperature only by changing the molar ratio of 1S / 1R in feed. Plot of the number fractions of the triad versus diad of poly( 1 ) was in good agreement with the Bernoulli statistics. In the polymerization in chiral solvents having analogs structure of the monomers, the tacticity and specific rotation of the resulting polymer were specifically varied depending on the structure and concentration of the solvents. Model propagation reaction at dimeric radical calculated with density functional theory reproduced a methodical induction of the chirality to the main chain from the branched chiral monomeric unit, which supports the experimental expectations. It is remarkable that the ceiling temperature of 1 is tremendously high, for example, 193 °C in [ 1 (ee = 72.6%)] = 0.05 mol/L, and the isospecific polymerization is maintained even at such a high temperature, which enabled the control of polymer tacticity over a wide range of temperature. The mechanism of the stereosequence in radical polymerization was discussed experimentally and theoretically. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 184–193  相似文献   

4.
A copolymer of N‐isopropylacrylamide with the N‐hydroxysuccinimide ester of methacrylic acid has found use in a variety of applications. Here we report our efforts to gain control over the molecular weight distribution of this copolymer with controlled radical polymerization methods, such as atom transfer radical polymerization, reversible addition–fragmentation transfer (RAFT), and nitroxide‐mediated polymerization. We have found that RAFT is capable of affording these copolymers with a polydispersity index of 1.1–1.2. Our results for all three polymerizations are reported. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6340–6345, 2004  相似文献   

5.
The design and synthesis of a new hydrophobic monomer, that is, 4‐(tert‐butyl)phenyl 6‐acrylamidohexanoate (TBP‐AA‐HO) and its ability to form supramolecular host/guest complexes with β‐cyclodextrin (CD) is described. The aqueous CD‐mediated reversible addition fragmentation chain transfer (RAFT) polymerization affords molecular masses up to 8600 g mol?1 with polydispersities between 1.2 and 1.4. The surprisingly low molecular weights for higher monomer/chain transfer agent (CTA) ratios are investigated by comparing results obtained from free radical and RAFT radical polymerization in aqueous and organic media. The results indicate a steric hindrance caused by attached CD molecules on the growing polymer chain leading to stagnation of the polymerization process due to a restricted accessibility of the reactive chain end. This hypothesis is supported by matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Furthermore, the CD‐mediated synthesis of amphiphilic diblock copolymers in variable aqueous media is described. Hydrophilic poly(N,N‐dimethylacrylamide) macro‐CTAs with different molecular weights are used to polymerize TBP‐AA‐HO at 50 °C. The diblock copolymers are analyzed by 1H‐nuclear magnetic resonance spectroscopy and size exclusion chromatography. The results confirm the polymer structure and reveal similar limitations of chain growth as observed for the CD‐mediated homopolymerization with a limit of 7000 g mol?1 for efficient chain extension. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2504–2517  相似文献   

6.
The sterically hindered monomers dibutyl itaconate (DBI) and dicyclohexyl itaconate (DCHI) were polymerized via reversible addition fragmentation chain transfer (RAFT) free‐radical polymerization. S,S′‐Bis(α,α′‐dimethyl‐α″‐acetic acid) trithiocarbonate, cumyl dithiobenzoate, and cumyl phenyldithioacetate have been used as RAFT agents to mediate a series of polymerizations at 65 °C yielding rod polymers ranging in number average molecular weight from 9000 to 92,000 g mol?1. The progress of the polymerization was followed via online Fourier transform–near infrared spectroscopy. The polydispersity indices of the obtained rod polymers were relatively high at 1.4–1.7. The RAFT polymerizations of the hindered monomers used in the present study displayed both ideal living and hybrid behavior between conventional and living polymerization, depending on the RAFT agent used. DCHI rod polymers generated via the RAFT process were subsequently reinitiated in the presence of styrene to produce a range of BAAB and A‐B rod‐coil block copolymers of molecular weights up to 164,000 g mol?1. The chain extension yields molecular weight distributions that progressively shift to higher molecular weights and are unimodal. Thermogravimetric analysis of the pDCHI‐blockpStyrene copolymers indicates thermal degradation in two separate steps for the pDCHI and pStyrene blocks. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2432–2443, 2004  相似文献   

7.
This work describes synthesis of antimicrobial methacrylate copolymers by reversible addition‐fragmentation chain transfer (RAFT) polymerization and examines the versatility of this approach for improving chemical optimization to create potent, non‐toxic antimicrobial polymers. Specifically, this study focuses on the radical‐mediated transformation of end group of antimicrobial peptide‐mimetic polymer. RAFT polymerization using 2‐cyano‐2‐yl‐dithiobenzoate provided a statistical methacrylate copolymer consisting of aminobutyl and ethyl groups in the side chains. The following radical‐mediated modification using free radical initiators successfully transformed the ω‐end group of parent copolymer from dithiobenzoate to a cyanoisobutyl or aminoethyl cyanopentanoate group without any significant changes to the polymer molecular weight. In general, the parent polymer and variants showed a broad spectrum of activity against a panel of bacteria, but low hemolytic activity against human red blood cells. The parent copolymer with the dithiobenzoate end‐group showed highest antimicrobial and hemolytic activities as compared with other copolymers. The copolymers caused membrane depolarization in Staphylococcus aureus, while the ability of copolymers for membrane disruption is not dependent on the end‐group structures. The synthetic route reported in this study will be useful for further study of the role of polymer end‐groups in the antimicrobial activity of copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 304–312  相似文献   

8.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization is a more robust and versatile approach than other living free radical polymerization methods, providing a reactive thiocarbonylthio end group. A series of well‐defined star diblock [poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide)]4 (SPCLNIP) copolymers were synthesized by R‐RAFT polymerization of N‐isopropylacrylamide (NIPAAm) using [PCL‐DDAT]4 (SPCL‐DDAT) as a star macro‐RAFT agent (DDAT: S‐1‐dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate). The R‐RAFT polymerization showed a controlled/“living” character, proceeding with pseudo‐first‐order kinetics. All these star polymers with different molecular weights exhibited narrow molecular weight distributions of less than 1.2. The effect of polymerization temperature and molecular weight of the star macro‐RAFT agent on the polymerization kinetics of NIPAAm monomers was also addressed. Hardly any radical–radical coupling by‐products were detected, while linear side products were kept to a minimum by careful control over polymerization conditions. The trithiocarbonate groups were transferred to polymer chain ends by R‐RAFT polymerization, providing potential possibility of further modification by thiocarbonylthio chemistry. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

10.
Hydrophilic/CO2‐philic poly(ethylene oxide)‐b‐poly(1,1,2,2‐tetrahydroperfluorodecyl acrylate) block copolymers were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization, iodine transfer polymerization (ITP), and atom transfer radical polymerization (ATRP) in the presence of either degenerative transfer agents or a macroinitiator based on poly(ethylene oxide). In this work, both RAFT and ATRP showed higher efficiency than ITP for the preparation of the expected copolymers. More detailed research was carried out on RAFT, and the living character of the polymerization was confirmed by an ultraviolet (UV) analysis of the ? SC(S)Ph or ? SC(S)S? C12H25 end groups in the polymer chains. The quantitative UV analysis of the copolymers indicated a number‐average molecular weight in good agreement with the value determined by 1H NMR analysis. The properties of the macromolecular surfactants were investigated through the determination of the cloud points in neat liquid and supercritical CO2 and through the formation of water‐in‐CO2 emulsions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2405–2415, 2004  相似文献   

11.
An aqueous reversible‐deactivation radical polymerization (RDRP) approach is used to synthesize sodium polystyrene sulfonate directly from functionalized monomers to give uniformly and completely sulfonated materials. Reproducible gram scale syntheses are achieved under simple one pot reaction conditions at ambient temperatures, and full monomer conversions are achieved within approximately 3 h. Reaction variables such as pH, sodium chloride concentration, and methanol cosolvent have a significant effect on the molecular weights (Mn ≈ 20,000–400,000 g·mol?1) obtained by gel permeation chromatography coupled multiangle light scattering. Observed dispersities were reasonably narrow: Ð ≈ 1.05–1.3. A parametric optimization, rather than direct variation of the monomer to initiator ratio, resulted in some of the highest molecular weight polymers by an RDRP approach. Linear progression between Mn and monomer conversion occurs at a neutral reaction pH, which results in narrow polymer molecular weight distributions, along with high end‐group fidelity as demonstrated with chain extension reactions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1527–1537  相似文献   

12.
PREFACE     
Ze-Sheng An  Zhi-Bo Li  Zi-Chen Li 《高分子科学》2021,39(9):前插1-前插2
正We are delighted to present this special themed topic of Chinese Journal of Polymer Science(CJPS) devoted to the recent advances in reversible deactivation radical polymerization(RDRP). RDRP has been widely recognized as one of the most important synthetic methods for polymers, allowing access to well-defined polymeric materials with predictable molecular weight, controlled dispersity, and tailor-made architecture. Since its discovery,  相似文献   

13.
The polymerization of N‐vinylcarbazole (NVK) and carbazole methacrylate (CMA) was carried out using controlled radical polymerization methods such as atom transfer radical polymerization (ATRP), single electron transfer (SET)‐LRP, and single electron transfer initiation followed by reversible addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved in the case of NVK by high‐temperature ATRP while ambient temperature SET‐RAFT polymerization was relatively slow and controlled. In the case of CMA, SET‐RAFT is found to be more suitable for the ambient temperature polymerization. The polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The controlled nature of the polymerization is further demonstrated by the synthesis of diblock copolymers from PNVK and PCMA macroinitiators using a new flavanone‐based methacrylate (FMA) as the second monomer. All the polymers exhibited fluorescence. The excimer bands in the homopolymers of PNVK and PCMA were very broad, which may be attributed to the carbazole–carbazole overlap interaction. The scanning electron microscopy analysis of the block copolymer reveals interesting morphological features. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Tetrakis bromomethyl benzene was used as a tetrafunctional initiator in the synthesis of four‐armed star polymers of methyl methacrylate via atom transfer radical polymerization (ATRP) with a CuBr/2,2 bipyridine catalytic system and benzene as a solvent. Relatively low polydispersities were achieved, and the experimental molecular weights were in agreement with the theoretical ones. A combination of 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated free‐radical polymerization and ATRP was used to synthesize various graft copolymers with polystyrene backbones and poly(t‐butyl methacrylate) grafts. In this case, the backbone was produced with a 2,2,6,6‐tetramethyl piperidine‐N‐oxyl‐mediated stable free‐radical polymerization process from the copolymerization of styrene and p‐(chloromethyl) styrene. This polychloromethylated polymer was used as an ATRP multifunctional initiator for t‐butyl methacrylate polymerization, giving the desired graft copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 650–655, 2001  相似文献   

15.
Herein, we report the synthesis of quantum dots (QDs)/polymer nanocomposites by reversible addition‐fragmentation chain transfer (RAFT) polymerization in miniemulsions using a grafting from approach. First, the surfaces of CdS and CdSe QDs were functionalized using a chain transfer agent, a trisalkylphosphine oxide incorporating 4‐cyano‐4‐(thiobenzoylsulfanyl)pentanoic acid moieties. Using a free radical initiator (AIBN) to activate the RAFT process, a polystyrene (PS) block was grafted from the surface of the QDs. Quantum confinement effects were identified for the nanocomposite obtained, so attesting to the integrity of the QDs after the polymerization. Free PS chains were also present in the final nanocomposite, indicating that the RAFT polymerization from the surface of the QDs was accompanied by conventional free radical polymerization. After isolating the nanocomposite particles, a second poly(n‐butyl acrylate) block was tentatively grown from the initial PS block. The first results indicated a successful polymerization of the second polymer and show the potential of the current strategy to prepare block copolymers from the surface of the RAFT‐modified QDs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5367–5377, 2009  相似文献   

16.
This article discusses a facile and inexpensive reaction process for preparing polypropylene‐based graft copolymers containing an isotactic polypropylene (i‐PP) main chain and several functional polymer side chains. The chemistry involves an i‐PP polymer precursor containing several pendant vinylbenzene groups, which is prepared through the Ziegler–Natta copolymerization of propylene and 1,4‐divinylbenzene mediated by an isospecific MgCl2‐supported TiCl4 catalyst. The selective monoenchainment of 1,4‐divinylbenzene comonomers results in pendant vinylbenzene groups quantitatively transformed into benzyl halides by hydrochlorination. In the presence of CuCl/pentamethyldiethylenetriamine, the in situ formed, multifunctional, polymeric atom transfer radical polymerization initiators carry out graft‐from polymerization through controlled radical polymerization. Some i‐PP‐based graft copolymers, including poly(propylene‐g‐methyl methacrylate) and poly(propylene‐g‐styrene), have been prepared with controlled compositions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 429–437, 2005  相似文献   

17.
Until recently, the primary living radical polymerization method available for preparing polyisoprene was nitroxide‐mediated radical polymerization, with reversible addition‐fragmentation chain transfer polymerization being applied only in a few cases within the last couple of years. We report here the preparation of polyisoprene by RAFT in the presence of the trithiocarbonate transfer agent S‐1‐dodecyl‐S′‐(r,r′‐dimethyl‐r′′‐acetic acid)trithiocarbonate and t‐butyl peroxide as the radical initiator. The kinetics of this polymerization at an optimized temperature of 125 °C and radical initiator concentration of 0.2 equiv relative to transfer agent have been studied in triplicate and demonstrate the living nature of the polymerization. These conditions resulted in polymers with narrow polydispersity indices, on the order of 1.2, with monomer conversions up to 30%. Retention of chain‐end functionality was demonstrated by polymerizing styrene as a second block from a polyisoprene macrotransfer agent, resulting in a block copolymer presenting a unimodal gel permeation chromatogram, and narrow molecular weight distribution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4100–4108, 2007  相似文献   

18.
A combination of iridium‐catalyzed C H activation/borylation and atom transfer radical polymerization (ATRP) was used to generate polar graft copolymers of syndiotactic polystyrene (sPS). The borylation at aromatic C H bonds of sPS and subsequent oxidation of boronate ester proceeded without negatively affecting the molecular weight properties and the tacticity of sPS. A macroinitiator suitable for ATRP could be synthesized by the esterification of 2‐bromo‐2‐methylpropionyl bromide and hydroxy‐functionalized sPS. The graft polymerizations of methyl methacrylate and tert‐butyl acrylate from the macroinitiator using ATRP afforded polar block grafted sPS materials, syndiotactic polystyrene‐graft‐poly(methyl methacrylate) (sPS‐g‐PMMA) and syndiotactic polystyrene‐graft‐poly(tert‐butyl acrylate) (sPS‐g‐PtBA). The latter was hydrolyzed to yield an amphiphilic graft copolymer, syndiotactic polystyrene‐graft‐poly(acrylic acid) (sPS‐g‐PAA). The structures of the copolymers were characterized by NMR and FTIR spectroscopies. Size exclusion chromatography and 1H NMR spectroscopy were used to study any changes in the molecular weight properties from the parent polymer. A decrease in the hydrophobicity of the graft copolymers was confirmed by water contact angle measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6655–6667, 2009  相似文献   

19.
The polymerization of 4‐vinylpyridine was conducted in the presence of a cyclic trithiocarbonate (4,7‐diphenyl‐[1,3]dithiepane‐2‐thione) as a reversible addition–fragmentation transfer (RAFT) polymerization agent, and a multiblock polymer with narrow‐polydispersity blocks was prepared. Two kinds of multiblock copolymers of styrene and 4‐vinylpyridine, that is, (ABA)n multi‐triblock copolymers with polystyrene or poly(4‐vinylpyridine) as the outer blocks, were prepared with multiblock polystyrene or poly(4‐vinylpyridine) as a macro‐RAFT agent, respectively. GPC data for the original polymers and polymers cleaved by amine demonstrated the successful synthesis of amphiphilic multiblock copolymers of styrene and 4‐vinylpyridine via two‐step polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2617–2623, 2007  相似文献   

20.
We describe the synthesis of three novel thermoresponsive copolymers of acrylonitrile (AN) with N‐isopropylacrylamide (NIPAM) by a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP). Linear copolymer polyacrylonitrile (PAN)‐b‐PNIPAM was directly prepared by RAFT polymerization. Comb‐like copolymers were synthesized by ATRP using brominated AN/2‐hydroxyethyl methacrylate copolymers as macroinitiators, which were prepared by RAFT polymerization. FT‐IR, NMR, and GPC were employed to characterize the synthesized copolymers. Results indicate that the polymerization processes can be well controlled and the resultant copolymers have well‐defined structures as well as narrow polydispersity. Then dense films were fabricated from these thermoresponsive copolymers and the surface wettability was evaluated by water contact angle measurements at different temperatures. It is found that the surface wettability is temperature‐dependant and both the transition temperature and decrement of water contact angle are affected by the copolymer shapes as well as the length of PNIPAM blocks. Considering the excellent fiber‐ and membrane‐forming properties of PAN‐based copolymers, the obtained thermoresponsive copolymers are latent materials for functional fibers and membranes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 92–102, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号