首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Poly(vinylidene fluoride) (PVF2) produces thermoreversible gels in a series of diesters. The polymer-solvent complexation occurred for intermittent number of carbon atoms n ⩾ 2 and the enthalpy of complexation increased with increasing n. The gels were dried by replacing the diesters with low boiling solvent like cyclohexane (bp. 80 °C) and methylcyclohexane (bp. 99 °C). The porosity of the dried gels was measured using Poremaster-60. For PVF2-DEAZ gel meso and macro porosity have been observed. The former pore dimensions have been attributed for polymer-solvent complexation while the macroporosity has been attributed for caging of solvent between the PVF2 fibrils The porosity measured from nitrogen adsorption isotherms using BJH method indicate presence of minimum pore diameter of 3.8 nm for the 10% dried gel of PVF2.  相似文献   

2.
While the terminally protected tripeptide Boc-Phe-Gly-m-ABA-OMe I (m-ABA, meta-amino benzoic acid) is an excellent gelator of aromatic organic solvents, another similar tripeptide Boc-Leu-Gly-m-ABA-OMe II, where the Phe residue of peptide I is replaced by Leu, cannot form gels with the same solvents. The morphology of the gels of peptide I, characterised by the field-emission scanning electron microscopy and high-resolution transmission electron microscopy, reveals the formation of nanofibrous networks which are known to encapsulate solvent molecules to form gels. The wide-angle X-ray scattering studies of the gels suggest the β-sheet-mediated self-assembly of peptide I in the formation of a nanofibrous network, where π-stacking interactions of Phe play an important role in the self-assembly and gel formation. The dried gel of peptide I observed between crossed polarisers after binding with a physiological dye, Congo red, shows a bluish-green birefringence, a characteristic of amyloid fibrils.  相似文献   

3.
1,3:2,4‐Dibenzylidene‐d ‐sorbitol (DBS), a simple, commercially relevant compound, was found to self‐assemble as a result of intermolecular noncovalent interactions into supramolecular gels in deep eutectic solvents (DESs) based on choline chloride combined with alcohols/ureas. DBS formed gels at a loading of 5 % w/v. Rheology confirmed the gel‐like nature of the materials, electron microscopy and X‐ray diffraction indicated underpinning nanofibrillar DBS networks, and differential scanning calorimetry showed the DES nature of the liquid‐like phase was retained. The ionic conductivities of the gels were similar to those of the unmodified DESs, thus proving the deep eutectic nature of the ionic liquid‐like phase. Gelation was tolerant of ionic additives Li+, Mg2+, and Ca2+; the resulting gels had similar conductivities to electrolyte dissolved in the native DES. The low‐molecular‐weight gelator DBS is thus a low‐cost additive that forms gels in DESs from readily available constituents, with conductivity levels suitable for practical applications.  相似文献   

4.
It is shown that, on cooling, solvent present at the surface of swollen vulcanizates freezes before the onset of freezing in the gel solvent, causing gel solvent to diffuse to the sample surface where it adds to existing crystalline areas. At the freezing point of the gel solvent a liquid-solid equilibrium does not exist, and a theory is postulated to account for the freezing point depression observed in swollen gels in terms of the conditions required for the formation of crystalline nuclei within the gel solvent. The theory is shown to apply to the freezing of cyclohexane and benzene in vulcanized and unvulcanized natural rubber. In line with the theory the presence of carbon black does not alter the solvent freezing point, but vacuole formation around nonreinforcing fillers leads to lower freezing point depressions.  相似文献   

5.
We report the swelling behavior of chemically crosslinked polyvinyl alcohol (PVA) gels with different degrees of hydrolysis in water, several organic solvents, and their mixed solvents. The gels were dried after gelation and were put into their respective solvents. The gel volume in pure water decreased with increasing temperatures, and the total changes increased with decreasing degrees of hydrolysis. The swelling ratio depends on the solvent and its concentration. In the cases of mixed solvents of methanol–water, ethanol–water, and acetone–water, the gels shrank continuously with increasing concentrations of solvents and reached the collapsed state in the pure organic solvent. In the case of dimethyl sulfoxide (DMSO), on the other hand, the gels shrunk, swelled, and finally reached the swollen state in pure DMSO. Results of measurements using Fourier Transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) suggested that crosslinks and microcrystallites were formed due to hydrogen bonds during the drying process after gelation. The hydrogen bonds were partly destroyed in a rich solvent, but the residual hydrogen bonds had an essential role in determining the swelling behavior in a poor solvent. The swelling behavior and the possible phase transition of the present system are discussed in terms of the solubility of polymers with different degrees of hydrolysis in given mixed solvents and in terms of the formation and destruction of physical crosslinks in the chemical PVA gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1978–1986, 2010  相似文献   

6.
Poly(ethylene terephthalate) (PET) was rapidly crystallized through thermoreversible gelation in a liquid ethylene glycol oligomer or in epoxy resin. The solutions formed gel rapidly on cooling. Polarized light microscopy and small-angle light scattering showed that these gels contain large, regular PET spherulites. The gels may be formed by two consecutive processes: the phase separation and crystallization, and gelation by formation of a three-dimensional PET network in the oligomer solvents, where the nodes of the network are PET spherulites. The crystallinity of PET recovered from polymer/oligomer gels is near 72% measured by wide-angle X-ray diffraction method, which is about 20% higher than PET samples crystallized by solution crystallization in small molecule solvent, high temperature annealing, and stretching techniques. It takes only a few minutes to form the highly crystalline phase PET in the PET/oligomer system, and the crystallinity of the dried gel is independent of the concentration of the original solution. Excimer-fluoresence and Raman spectroscopic studies indicated that PET recovered from the gels are in an ordered state with few chain entanglements. The entanglement density of the recovered PET recovered from a 20 wt % solution in ethylene glycol oligomer is as low as that of freeze-extracted PET from a 0.5 wt % solution in phenol. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1219–1225, 1998  相似文献   

7.
The 1,3:2,4-dibenzylidene-D-sorbitol (DBS) molecule is capable of self-organizing into nanoscale fibrils through intermolecular forces such as hydrogen bonding and pi interactions. At sufficiently high concentrations (typically less than approximately 2 wt%), the nanofibrils can form a network that promotes physical gelation of the matrix medium. Previous studies have investigated the mechanism of DBS-induced gelation and the features of DBS-containing gels in poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG). In this work, we examine the effect of adding DBS to a series of amphiphilic PPG-b-PEG-b-PPG triblock copolymers differing in composition and molecular weight. Dynamic rheological measurements reveal that the resultant gels are thermoreversible (i.e., they exhibit comparable mechanical properties before dissolution and after reformation under quiescent conditions), exhibiting a maximum in the elastic modulus (G') at temperatures near the gel dissolution (T(d)) and formation (T(f)) temperatures. Both T(d) and T(f) tend to increase with increasing DBS concentration and PPG content, and their difference decreases with increasing PPG fraction in the copolymer. The magnitude of G' is sensitive to copolymer composition and polymer identity at low DBS concentrations, but becomes polymer-independent as the DBS network saturates at concentrations in excess of approximately 1 wt%.  相似文献   

8.
Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel‐like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom‐up process. In contrast, the spongy gels are formed by a top‐down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel‐like material. The spongy gels are independent of a time‐consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non‐wetting liquids dispersed in the sponge.  相似文献   

9.
The morphology of thermoreversible polyacrylonitrile–propylene carbonate (PAN-PC) gels was examined using solid-state carbon-13 nuclear magnetic resonance (NMR) spectroscopy and x-ray diffraction. Following complete dissolution of the polymer at elevated temperature and cooling of the concentrated PAN-PC solutions, a gel was formed. The PAN-PC gels consisted of regions of mobile polymer chains, rich in PC, “cross-linked” by regions of rigid polymer. The mobile regions of the gels showed solution-type NMR spectra with resolution of tacticity effects. The rigid component detected by NMR would correspond to the crysttallites detected previously by x-ray diffraction. Wide-angle x-ray diffractograms of the gels showed different peaks when compared with the dry polymer powder. After solvent extraction and drying of the gel, the diffractogram reverted to that of the original dry powder. This new result is the strongest evidence to support the view advanced earlier that the new peaks found in the diffraction pattern of the wet gels arises from solvated polymer crystallites rather than from ordinary polymer crystallites. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Bis(LeuOH) (1a), bis-(ValOH) (2a) and bis(PhgOH) (5a) (Phg denotes (R)-phenylglycine) oxalyl amides are efficient low molecular weight organic gelators of various organic solvents and their mixtures as well as water, water/DMSO, and water/DMF mixtures. The organisational motifs in aqueous gels are dominated primarily by lipophilic interactions while those in organic solvents are formed by intermolecular hydrogen bonding. Most of the gels are thermoreversible and stable for many months. However, 2a forms unstable gels with organic solvents which upon ageing transform into variety of crystalline shapes. For some 1a/alcohol gels, a linear correlation between alcohol dielectric constants (epsilon) and gel melting temperatures (Tg) was found. The 1H NMR and FTIR spectroscopic investigations of selected gels reveal the existence of temperature dependent network assembly/dissolution equilibrium. In the 1H NMR spectra of gels only the molecules dissolved in entrapped solvent could be observed. By using an internal standard, the concentration of dissolved gelator molecules could be determined. In FTIR spectra, the bands corresponding to network assembled and dissolved gelator molecules are simultaneously present. This enabled determination of the Kgel values by using both methods. From the plots of InKgel versus 1/T, the deltaHgel values of selected gels have been determined (-deltaHgel in 10-36 kJ mol(-1) range) and found to be strongly solvent dependent. The deltaHgel values determined by 1H NMR and FTIR spectroscopy are in excellent agreement. Crystal structures of 2a and rac-5a show the presence of organisational motifs and intermolecular interactions in agreement with those in gel fibres elucidated by spectroscopic methods.  相似文献   

11.
Gelation of solutions of poly(ethylene terephthalate-co-isophthalate) depends on chain structure, solvent, temperature, and concentration. Wide-angle x-ray scattering and differential scanning calorimeter experiments reveal the crystalline nature of the gel. The crystalline crosslinks, with a fringed micellar structure, are composed of terephthalate units. Orientation of the dried gels reveals the presence of crystallites with their largest dimension parallel or perpendicular to the chain axis. At high enough concentration of crystallizing units in the chain, folded-chain lamellar structures are also formed. Compared with the fringed micellar crystallization, the induction time for this crystallization is short. Melting of the folded-chain structures is very similar to the melting of pure poly(ethylene terephthalate). Because of the crystalline nature of this gelation, copolymers with only a small difference in composition can be fractionated according to the difference in micro-structure.  相似文献   

12.
It is shown that phospholipid dispersions with a few percent of diacylphosphocholine PC in water can be swollen to single-phase lyotropic liquid crystalline Lα-phases by the addition of co-solvents like glycerol, 1,3-butyleneglycol BG or 1,2-propyleneglycol PG. The birefringent Lα-phases contain small unilamellar and multilamellar vesicles if the temperature of the samples is above the Krafft-Temperature Tm of the phospholipid. When such transparent birefringent viscous samples are cooled down below Tm the samples are transformed into birefringent gels. Cryo-TEM and FF-TEM measurements show that the bilayers of the vesicles are transformed from the liquid to the crystalline state during the transformation while the vesicle structure remains. The bilayers of the crystalline vesicles form adhesive contacts in the gel. Pulsed-field gradient NMR measurements show that two different kinds of water or co-solvent can be distinguished in the gels. One type of solvent molecules can diffuse like normal solvent in a continuous bulk phase. A second type of water diffuses much more slowly. This type of solvent is obviously trapped in the vesicles. The permeability of the crystalline vesicles for water and solvent molecules is much lower in the crystalline state than in the fluid state.  相似文献   

13.
Cellulose organo gels with liquid crystalline (LC) order have been prepared by crosslinking cellulose chains with a difunctional unit, adipoylchloride, or a monofunctional molecule containing a reactive double bond, 4-pentenoil chloride. Both gels display a reversible change from LC order to isotropic phase by changing the amount of solvent. The relation between the critical concentration at which the LC phase is stable, and the degree of crosslinking depends on the crosslinking agent. Both gels swell in dimethylacetamide and acetone: however the degree of swelling decreases with the degree of crosslinking in dimethylacetamide, while an increase is observed in acetone. This particular behavior can be explained by taking into account the different composition of the networks. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
We report the effects of guest particles on the swelling properties of bulk polyacrylamide gels. The guest particles were the spheres of poly(N‐isopropylacrylamide) gel with submicrometer diameter, which were synthesized by an emulsion‐polymerized reaction in water. Polyacrylamide gels were prepared by a free radical polymerization reaction, immobilizing the gel microparticles with different concentrations at gelation. The macroscopic swelling ratio of this hybrid gel in a cylindrical shape was measured as functions of temperature and acetone concentration. The presence of guest particles was found to strongly affect the swelling behavior in the bulk gels when the concentration of incorporated particles exceeded a threshold. The experimental results indicated that the macroscopic volume in response to the temperature change should be determined by the guest particles above the threshold. On the other hand, the hybrid gel could not evidently shrink by adding acetone when the concentration of guest particles exceeded the threshold. To make clear the distribution of guest particles in the bulk networks, the fractured surfaces of dried gels were imaged by tapping mode atomic force microscopy. The guest particles were found to aggregate in the bulk homogeneous networks to form microdomains with densely connected structure, which became larger with increasing particle concentration. The roles of bulk networks as well as guest particles on the swelling behavior of hybrid gels were qualitatively discussed on the basis of the incorporated structure of guest particles, depending on the concentration of guest particles. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1696–1704, 2005  相似文献   

15.
The studies of the gel-to-sol phase transition by the Raman, FT-IR, and 1H NMR methods of the gel made by low molecular weight organogelator 1,2-O-(1-ethylpropylidene)-alpha-D-glucofuranose with toluene as the solvent are reported. The FT-IR spectra revealed the existence of a hydrogen bond network formed by gelator molecules in the crystalline and gel phase. In both phases, the network formation is dominated by the gelator self-interaction. Upon gelation, only one stretching band of infrared absorption modes nualpha, assigned to the O(6)H hydroxyl protons of gelator, is shifted by Deltaupsilonalpha = 25 cm-1, which indicates the involvement of this proton in the interaction with the solvent molecules. The phase transition measurements performed as a function of gelator concentration allowed the calculation of the energy correlated with the transition from gel to solution phase. The obtained value of 72 kJ/mol is the largest one reported up until now for monosaccharide-based gels. The analysis of the temperature measurements of the toluene 1H NMR spectra provides evidence for a different chemical environment of toluene molecules in the gel. The toluene spin-lattice relaxation in bulk and gel indicate that the viscosity is most likely the main factor that influences the dynamics of toluene.  相似文献   

16.
We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid phase separation. Furthermore, we use Brownian dynamics simulations to study the relation between gel formation and the equilibrium phase diagram. We find that, regardless of the interaction range, an interrupted liquid-gas phase separation is observed as the system is quenched into a state point where the gas-liquid separation is metastable. The structure of the gel formed in our experiments compares well with that of a simulated gel, indicating that gravity has only a minor influence on the local structure of this type of gel. This is supported by the experimental evidence that gels squeezed or stretched by gravity have similar structures, as well as by the fact that gels do not collapse as readily as in the case of colloid-polymer mixtures. Finally, we check whether or not crystallites are formed in the gel branches; we find crystalline domains for the longer ranged interactions and for moderate quenches to the metastable gas-liquid spinodal regime.  相似文献   

17.
Gels and pastes are used in many areas including application in the cosmetic, pharmaceutical and medical industries. A xylan derivative with pasty consistency was prepared in addition to the synthesis of xylan ethers and esters. The water content of the gel can be widely varied. The gel is formed although the xylan contains no cross-linking group. The hydrophobic and hydrophilic nature of the xylan gel can be adjusted by modifying the xylan. All of the gels can be dried using different methods (air drying, solvent exchange as well as freeze drying) and the dried gels can again disperse in water. The gels were characterised by porosity measurements (mercury intrusion), dynamic vapour sorption (DVS), scanning electron microscopy (SEM) and dispersion stability investigation respectively.  相似文献   

18.
Organic gels have been synthesized by sol–gel polycondensation of phenol (P) and formaldehyde (F) catalyzed by sodium carbonate (C). The effect of synthesis parameters such as phenol/catalyst ratio (P/C), solvent exchange liquid and drying method, on the porous structure of the gels have been investigated. The total and mesopore volumes of the PF gels increased with increasing P/C ratio in the range of P/C ≤ 8, after this both properties started to decrease with P/C ratio for P/C > 8 and the gel with P/C = 8 showed the highest total and mesopore volumes of 1.281 and 1.279 cm3 g−1 respectively. The gels prepared by freeze drying possessed significantly higher porosities than the vacuum dried gels. The pore volume and average pore diameter of the freeze dried gels were significantly higher than those of the vacuum dried gels. T-butanol emerged as the preferred solvent for the removal of water from the PF hydrogel prior to drying, as significantly higher pore volumes and specific surface areas were obtained in the corresponding dried gels. The results showed that freeze drying with t-butanol and lower P/C ratios were favourable conditions for the synthesis of highly mesoporous phenol–formaldehyde gels.  相似文献   

19.
The effect of solvent type on the structural features of PVC gels prepared from the solutions of dibutyl phthalate(DBP) and butyl benzoate(BB) were investigated. The influence of solvent type, i.e., diester solvent or monoester solvent, on the mechanical responses was characterized by dynamic viscoelastic measurements as a function of temperature, aging time, and PVC concentration. In the case of PVC/DBP aged gels, the transition phenomenon appeared close to 50°C, whereas no such transitions were observed for PVC/BB aged gels. This transition is considered to be associated with polymer‐solvent complex which can be accounted for electrostatic interaction between C=O bond of solvent and H‐C‐Cl part of PVC. While BB solvent molecules can not form polymer‐solvent complex due to no capacity to act as a bridge between PVC molecular chains. FT‐IR spectroscopy and DSC investigation on either PVC/DBP gels or PVC/BB gels was reported and discussed together with the mechanical behavior. Electron micrographs of the dried gel prepared from the critical point drying technique reveal that the gel morphology consists of well developed three dimensional fibrous network structure independent of solvent type.  相似文献   

20.
We present a mean field theory to describe volume phase transitions of side-chain liquid crystalline gels. Three different uniaxial nematic phases (N(1), N(2), and N(3)) are defined by using orientational order parameter S(m) of side-chain liquid crystals (mesogens) and S(b) of backbone chains. We derive the free energy for the three nematic phases of side-chain liquid crystalline gels dissolved in isotropic solvents and calculate the swelling curve of the gel, the order parameters of a backbone chain and of side-chain liquid crystals, and the deformation of the gel as a function of temperature and an electric field. We find isotropic-nematic (N(1), N(2), and N(3)) and N(1)N(2) phase transitions of the gels, depending on the interaction between a backbone chain and a side-chain liquid crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号