首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
利用液相电沉积的方法在1600V,60℃条件下,从乙腈中沉积出类金刚石薄膜,发现了电流密度随反应时间呈波动变化的规律,并利用原子力显微镜和透射电子显微镜对薄膜不同生长阶段的形貌进行了考察.  相似文献   

2.
本文简单介绍了原子力显微镜的发展史,以及原子力显微镜的工作原理、工作模式、活细胞在生理状态下的成像方式等,特别介绍了生物型原子力显微镜、高速原子力显微镜在生物学领域的研究及应用。原子力显微镜在扫描速度、扫描范围、扫描精度方面的不断改进将为肿瘤细胞学研究提供源源不断的动力。本文着重阐述了原子力显微术在肿瘤领域的研究进展,包括原子力显微镜在肿瘤细胞形貌学特性、硬度、粘弹性方面的研究现状,并对原子力显微镜在肿瘤诊断及抗肿瘤药物研发方面的应用前景进行了展望。  相似文献   

3.
采用LbL模板技术,将天然聚电解质壳聚糖CS和海藻酸钠ALG、磁性纳米颗粒Fe3O4或带负电荷或双亲性磷脂在单分散胶体表面进行组装,制备了一种具有热磁双重响应性的新型载药微囊.通过透射电镜、激光共聚焦显微镜、zeta-电位分析仪、紫外分光光度计等对微囊结构及载药、释药性能进行了表征.实验结果表明:微囊的载药量最高可达到22.40%,且具有磁导向作用.微囊外层组装具有热敏性质的磷脂层能有效地克服壳聚糖/海藻酸钠微囊通透性大而导致在较低温(正常生理环境)的输送过程中药物泄漏问题,而在较高温条件下又可使药物迅速释放,从而实现药物的可控释放.  相似文献   

4.
随着人类对能源的使用与存储需求不断增加,高能量密度和高安全性能的二次锂电池体系正在被不断地开发与完善.深入理解充放电过程中锂电池内部电极/电解质界面的电化学过程以及微观反应机理,有利于指导电池材料的优化设计.原位电化学原子力显微镜将原子力显微镜的高分辨表界面分析优势与电化学反应装置相结合,能够在电池运行条件下实现对电极/电解质界面的原位可视化研究,并进一步从纳米尺度上揭示界面结构的演化规律与动力学过程.本文总结了原位电化学原子力显微镜在锂电池电极过程中的最新研究进展,主要包括基于转化型反应的正极过程、固体电解质中间相的动态演化以及固态电池界面演化与失效分析.  相似文献   

5.
识别和解析石墨烯中缺陷的精确原子结构是研究不同类型缺陷的物化特性, 实现石墨烯物性调控的前提, 可以为在原子尺度研究石墨烯缺陷的构效关系提供重要的实验依据. 本文结合扫描隧道显微镜(STM)和原子力显微镜(AFM)确认了在Ir(111)表面生长的石墨烯中自发形成的缺陷, 以及通过离子轰击方法在石墨烯中引入的多种缺陷结构, 包括单空位缺陷、 非六元环拓扑结构以及石墨烯层下的基底缺陷.  相似文献   

6.
原子力显微镜(AFM)因其制样简单以及高分辨成像特点,因此在药物与细胞相互作用的研究中具有越来越广泛的应用.Girasole等用AFM观察了在药物、低离子浓度等条件下的红细胞与正常红细胞之间表面微观结构的差别.  相似文献   

7.
多壁碳纳米管在精氨酸溶液中分散性的pH敏感性   总被引:3,自引:0,他引:3  
通过非共价反应将精氨酸包覆于多壁碳纳米管上, 并用荧光分光光度计和原子力显微镜检测其在不同pH值条件下的分散性和凝聚性. 结果表明: 改性后的碳纳米管的分散性具有pH敏感性, pH值越大, 分散性越好, 且灵敏度高. 同时对其pH敏感性的机理进行了分析与讨论. 这将对碳纳米管在药物载送、生物传感等方面的应用有重要的意义.  相似文献   

8.
用偏光显微镜和原子力显微镜对比研究了PEG-PLLA嵌段共聚物在110℃或120℃等温结晶后的结晶形貌.发现在110℃时只有PEG5000-PLLA2300和PEG5000-PLLA6300在偏光显微镜下呈现环带球晶形貌,在原子力显微镜高度图中显示明显的环带,并具有交替凸凹起伏形貌.而PEG5000-PLLA12000球晶中没有出现环带形貌而是生成了规则的环线.在120℃时,PEG5000-PLLA12000的球晶中才生成了规则的环带图案,原子力显微镜也显示了其球晶具有明显的交替凸凹起伏形貌,说明过冷度直接影响环带球晶的生成.产生周期性凸凹起伏和明暗交替消光是由片晶沿着球晶的半径方向周期性扭转造成的,片晶在凸起部分是Edge-on取向,在凹下部分是Flat-on取向.  相似文献   

9.
原子力显微镜在高分子领域的应用   总被引:13,自引:1,他引:12  
原子力显微镜在其发现不久即应用于高分子领域,弥补了扫描隧显微镜不能观测非导电样品的缺欠,因而受到重视,应用范围也不断扩展。最近几年,原子力显微镜的应用已由对聚合物表面几何形貌的观测发展到深入研究高分子的米级结构和表面性能等新领域,并由此导出了若干新概念和新方法。本文仅对当前原子力显微镜应用于高分子和高分子材料研究的几个重要方面举例进行介绍。  相似文献   

10.
失效原子力显微镜硅针尖再生   总被引:2,自引:0,他引:2  
原子力显微镜的传统商品硅针尖在使用过程中极易因磨损而失效,本文研究了一种在实验室条件下简易可行的回收利用失效硅针尖的方法。在原子力显微镜的敲击模式下使用曲率半径大于100 nm的失效硅针尖对生长单壁碳纳米管的样品表面进行扫描,把样品表面的单壁碳纳米管管束粘接到硅针尖上,可制得直径在5~20 nm的碳纳米管针尖。实验对碳纳米管针尖和新的商品硅针尖进行了成像对比,所制备的碳纳米管针尖不仅在成像分辨率而且在成像稳定性上都优于新的商品硅针尖。  相似文献   

11.
Calvo M  Enrich C 《Electrophoresis》2000,21(16):3386-3395
We isolated and characterized a subcellular fraction derived from the blood-sinusoidal plasma membrane of hepatocytes enriched in caveolin and containing several of the molecular components described to be present in caveolae isolated from other cell types. A morphological study by electron microscopy revealed that it was composed of caveolae-attached membrane profiles. Immunoelectron microscopy of isolated fraction showed the specific labeling of internal caveolae membranes with anti-caveolin antibody. Finally, one- and two-dimensional electrophoresis and Western blotting were used for the biochemical analysis of this new rat liver plasma membrane fraction. From the biochemical and the morphological characterization, we conclude that the caveolae-enriched plasma membrane fraction is a plasma membrane fraction, which originates from specialized regions of the sinusoidal plasma membrane, enriched in caveolae.  相似文献   

12.
The human endothelial cell plasma membrane harbors two subdomains of similar lipid composition, caveolae and rafts, both crucially involved in various essential cellular processes like transcytosis, signal transduction and cholesterol homeostasis. Caveolin-enriched membranes, isolated by either cationic silica or buoyant density methods, were explored by comparing large series of two-dimensional (2-D) maps and subsequent identification of over 100 protein spots by matrix-assisted laser desorption/ionization (MALDI) peptide mass fingerprinting. Improved representation and identification of membrane proteins and valuable information on various post-translational modifications was achieved by the presented optimized procedures for solubilization, destaining and database searching/computing. Whereas the cationic silica purification yielded predominantly known endoplasmic reticulum residents, the cold-detergent method yielded a large number of known caveolae residents, including caveolin-1. Thus, a large part of this subproteome was established, including known (trans-)membrane, signal transduction and glycosyl phosphatidylinositol (GPI)-anchored proteins. Several predicted proteins from the human genome were isolated for the first time from biological samples, including SGRP58, SLP-2, C8ORF2, and XRP-2. These findings and various optimized procedures can serve as a reference to study the differential composition of endothelial cell caveolae and rafts, known to be involved in pathologies like cancer and cardiovascular disease.  相似文献   

13.
Sun H  Ge B  Liu S  Chen H 《Journal of separation science》2008,31(6-7):1201-1206
In this study, recombinant allophycocyanin (rAPC) with a purity of 98% was transferred from a gel to a nitrocellulose (NC) membrane to develop a simple and efficient immuno-affinity membrane. Atomic force microscopy (AFM) was used to investigate the surface topography of the affinity membrane and its characterization indicated that rAPC easily forms trimers or hexamers on the membrane surface on use of the given transfer method. The hydrodynamic radius (R(h)) of the rAPC aggregation was equal to 103 nm or 365 nm according to dynamic light scattering (DLS), which was in agreement with the result obtained by AFM. Based on the specific immunological reaction of antigen and antibody, anti-APC antibodies were purified from rabbit polyclonal serum in a single step. The amount of absorbed antibody was 5.79 mg/g membrane according to analysis by ELISA methods. The purity of antibodies was up to 98% according to SDS-PAGE. The adsorption-desorption cycle of rAPC was repeated six times using the same immuno-affinity membrane, and there was no significant loss in adsorption capacity. The method provides a novel and efficient immunological affinity membrane for the purification of antibodies.  相似文献   

14.
Hydrophilizing synthetic polymer dialysis membranes with polyvinylpyrrolidone (PVP) play an important role for inhibition of protein adsorption on membrane surface. In the present study, the effect of PVP on protein adsorption was evaluated from a nano-scale perspective. Swelling behavior of PVP present on wet polysulfone (PS)/PVP film surfaces was observed by atomic force microscopy (AFM). Fibrinogen and human serum albumin (HSA) were immobilized on the tip of AFM probes, with which a force-curve between protein and wet PS/PVP film surface was measured by AFM while scanning in order to visualize two-dimensional protein adsorbability on film surfaces. Furthermore, HSA adsorbability on non-PVP containing PEPA dialysis membrane (FLX-15GW) and PVP containing PEPA dialysis membrane (FDX-150GW) was evaluated by the AFM force-curve method. As a result, PS/PVP film surface was completely covered with hydrated and swollen PVP at 5 wt% or more PVP content. Protein adsorbability on PS/PVP film surfaces decreased greatly with increasing content of PVP. The adsorption of HSA was inhibited by the presence of PVP on film surfaces more significantly than that of more hydrophobic fibrinogen. HSA adsorbability on wet FLX-15GW dialysis membrane surface was 428 ± 174 pN whereas that on wet FDX-150GW dialysis membrane surface was 42 ± 29 pN.  相似文献   

15.
Atomic force microscopy (AFM) was used to investigate the surface of polysulfone (PSf) membranes. The AFM method provides information on both size and shape of pores or cavities on the surface as well as the roughness of the skin. The pore sizes obtained from AFM observation were found to be more accurate than those obtained from scanning electron microscopy (SEM) since the potential of altering the pore structure of the membrane during sample preparation was eliminated. It was observed that two different modes of phase separation existed during the formation of PSf membrane when the coagulation conditions were varied.  相似文献   

16.
Endothelial cells (HUVEC) were treated with β-cyclodextrin (β-CD) and hydroxypropylated or methylated derivatives solutions to confirm their lack of affinity with phospholipids and their specificity towards cholesterol. Further studies were performed on bovine aortic endothelial cells to assess the effect of β-CDs (mainly methylated derivatives) on membrane microdomains (lipid rafts or caveolae), by detecting the caveolae marker caveolin-1 in fractions of sucrose gradients. A displacement from the lighter to the heavier fractions, characteristic of caveolae disruption, was observed using CDs. The strongest effect was obtained with dimethyl-β-CD, for which an accumulation of caveolin-1 was observed in the bottom of the gradient. Crysmeb® and trimethyl-β-CD seemed to have the weaker effects as a significative amount of caveolin-1 was still detected in the light fraction corresponding to caveolae. β-CD and CDs having a degree of methylation a bit lower than 2 showed intermediate effects. The results of the present study on microdomains seem in good correlation with the cell cholesterol extraction capacities of CDs previously determined.  相似文献   

17.
Atomic force microscopy (AFM) is known to be capable of measuring local surface charge density based on the DLVO model. However, it has failed to distinguish charge density difference between the extracellular and cytoplasmic sides of purple membrane (PM) in previous studies. In this paper, tapping-mode AFM with thioglycolate-modified tips was used to image PM in buffers of different salt concentrations. When imaged in 25 mM KCl buffer, the topography of membranes appeared to be of two different types, one flat and the other domelike. Such a difference was not observed in buffers of high salt concentrations. This suggests that the topography variation results from differences in electrostatic interaction between the AFM tip and the different membrane surfaces. With images of papain-digested PM and high-resolution images of membrane surface structure, we proved that the membrane surfaces with flat topography were on the extracellular side while the surfaces with domelike topography were on the cytoplasmic side. Hence, this provides a straightforward method to distinguish the two sides of PM without the requirement of high-resolution imaging. Force-distance curves clearly demonstrated the different tip-sample interactions. The force curves recorded on the extracellular side of PM were consistent with the DLVO model, so its surface charge density can be estimated well. However, the curves recorded on the cytoplasmic side had a much longer decay length, which is supposed to be relevant to the flexibility of the C-terminus of bacteriorhodopsin (bR).  相似文献   

18.
The force curve measurement mode of the atomic force microscope (AFM) enables us to measure hitherto unobservable mechanical properties of nanometer sized biological specimens. By applying this mode, we attempted to conduct such mechanical manipulations of membrane proteins as: (1) measurement of the separation force between a membrane bound receptor and a covalently cross-linked ligand molecule on the AFM tip; and (2) extraction of membrane proteins after harnessing them on a modified tip with covalent cross-linkers. Since the limiting tensile force of the covalent system used in our experiment was a crucial factor for successful manipulations, we first estimated the force to terminate the covalent cross-linking system at the single molecular level to be 1.6–1.7 nN, based on our previous data. The method was then applied to measure the force required to separate α2-macroglobulin (α2-M) from its receptor on the cell membrane using an AFM tip coated with the receptor binding form of the protein. From a bimodal distribution of rupture force, we obtained an average value of 120 pN as the force to separate a non-covalent association of α2-M with its receptor. When modified tips with covalent cross-linkers aimed at amino groups on the cell surface were used, distribution of the rupture force shifted toward higher values, with a peak in the histogram ≈400–500 pN. Since the force to sever covalent cross-linking system was 1.6–1.7 nN, the observed force was ascribed to the force required to extract membrane proteins from the cell membrane after covalent bond formation.  相似文献   

19.
The aim of this study was to analyze whether sera obtained from patients with lupus erythematosus (LE) react with membrane structures found on keratinocytes irradiated with narrow‐band ultraviolet B (NB‐UVB). We applied atomic force microscopy (AFM) to visualize cell surface structures expressing nuclear antigens upon apoptosis following NB‐UVB irradiation. Immortalized human keratinocytes (HaCaT) were cultured under standard conditions, irradiated with 800 mJ cm?2 NB‐UVB light and imaged by AFM mounted on an inverted optical microscope. It was observed that NB‐UVB irradiation provoked significant alterations of the keratinocyte morphology and led to the membrane expression of antigens recognized by anti‐La and anti‐Ro 60 kDa sera but not by antidouble‐strand DNA sera. The presence of La and Ro 60 kDa antigens on keratinocyte surfaces after NB‐UVB irradiation was limited mainly to the small bleb‐like protrusions found on the keratinocytes by AFM. A closer investigation by AFM also revealed that some structures positively stained with anti‐Ro 60 kDa serum were also located submembranously. We hypothesize that the externalization of some nuclear antigens because of NB‐UVB exposure might be responsible for exacerbation of skin symptoms in patients suffering from LE.  相似文献   

20.
In this study, phenolic resins from cashew nut shell liquid (CNSL) were applied as coating on Carbon Steel 1020 samples and successfully cured by plasma treatment or with hexamethylenetetramine (HMTA). The crosslinked samples were characterized by thermal analysis using thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and atomic force microscopy (AFM) techniques in order to evaluate the thermal stability of these samples, as well as understand and study the curing process. TG/DTG curves showed that the thermal stability of the HMTA-cured resin was slightly higher than the resin treated by plasma. According to the DSC curves, HMTA-cured resin and plasma-treated resin exhibited only transition temperatures, so both resins were predominantly amorphous. Images generated by AFM provided qualitative evaluation of the resin surfaces, demonstrating that the coating surface with best homogeneity was cured by plasma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号