首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We report a novel composite electrode made of chitosan‐SiO2‐multiwall carbon nanotube (CHIT‐SiO2‐MWNT) composite coated on the indium‐tin oxide (ITO) glass substrate. Cholesterol oxidase (ChOx) was covalently immobilized on the CHIT‐SiO2‐MWNT/ITO electrode that resulted in a ChOx/CHIT‐SiO2‐MWNT/ITO cholesterolactive bioelectrode. The CHIT‐SiO2‐MWNT/ITO and ChOx/CHIT‐SiO2‐MWNT/ITO electrodes were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of various parameters was investigated, including the applied potential, pH of the medium, and the concentration of the enzyme on the performance of the biosensor. The cholesterol bioelectrode exhibited a sensitivity of 3.4 nA/ mgdL?1 with a response time of five seconds. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode retained its original response after being stored for six months. The biosensor using ChOx/CHIT‐SiO2‐MWNT/ITO as the working electrode showed a linear current response to the cholesterol concentration in the range of 50–650 mg/dL.  相似文献   

2.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The highly efficient H2O2 biosensor was fabricated on the basis of the complex films of hemoglobin (Hb), nano ZnO, chitosan (CHIT) dispersed solution and nano Au immobilized on glassy carbon electrode (GCE). Biocompatible ZnO‐CHIT composition provided a suitable microenvironment to keep Hb bioactivity (Michaelis‐Menten constant of 0.075 mmol L?1). The presence of nano Au in matrix could effectively enhance electron transfer between Hb and electrode. The electrochemical behaviors and effects of solution pH values were carefully examined in this paper. The (ZnO‐CHIT)‐Au‐Hb/GCE demonstrated excellently electrocatalytical ability for H2O2. This biosensor had a fast response to H2O2 less than 4 s and excellent linear relationships were obtained in the concentration range from1.94×10?7 to 1.73×10?3 mol L?1 with the detection limit of 9.7×10?8 mol L?1 (S/N=3) under the optimum conditions. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

4.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

5.
To probe the kinetic performance of microsolvated α‐nucleophile, the G2(+)M calculations were carried out for the gas‐phase SN2 reactions of monohydrated and dihydrated α‐oxy‐nucleophiles XO?(H2O)n = 1,2 (X = HO, CH3O, F, Cl, Br), and α‐sulfur‐nucleophile, HSS?(H2O)n = 1,2, toward CH3Cl. We compared the reactivities of hydrated α‐nucleophiles to those of hydrated normal nucleophiles. Our calculations show that the α‐effect of monohydrated and dihydrated α‐oxy‐nucleophiles will become weaker than those of unhydrated ones if we apply a plot of activation barrier as a function of anion basicity. Whereas the enhanced reactivity of monohydrated and dihydrated ROO? (R = H, Me) could be observed if compared them with the specific normal nucleophiles, RO? (R = H, Me). This phenomena can not be seen in the comparisons of XO?(H2O)n = 1,2 (X = F, Cl, Br) with ClC2H4O?(H2O)n = 1,2, a normal nucleophile with similar gas basicity to XO?(H2O)n = 1,2. These results have been carefully analyzed by natural bond orbital theory and activation strain model. Meanwhile, the relationships between activation barriers with reaction energies and the ionization energies of α‐nucleophile are also discussed. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
In the title compound, [Zn(C7H6NO2)(NO3)(H2O)]n, the Zn atom is coordinated by two nitrate ions, one aqua molecule and two 4‐aminobenzoate ions in a distorted octahedral geometry. The structure of the compound exhibits a two‐dimensional layer, which is formed by the interconnection of [Zn(C7H6NO2)(H2O)]n chains viaμ2‐nitrate bridges or by the interconnection of [Zn(NO3)(H2O)]n chains viaμ2‐4‐aminobenzoate bridges.  相似文献   

7.
Novel dendrite‐like silver particles were electrodeposited on Ti substrates from a supporting electrolyte‐free 30 mmol L?1 Ag(NH3)2+ solution, to synthesize the den‐Ag/Ti electrode. Binary AgxCoy/Ti electrodes with different Ag:Co atomic ratios were further obtained by electrodeposition of Co particles on the den‐Ag/Ti electrode. Polyaniline (PANI) modified den‐Ag/Ti and AgxCoy/Ti electrodes, PANI(n)‐den‐Ag/Ti and PANI(n)‐AgxCoy/Ti, were also obtained by cyclic voltammetry at different numbers of cycles (n) in acidic and alkaline solutions containing aniline, respectively. All these electrodes exhibit high electroactivity for oxygen reduction reaction (ORR) in alkaline solution and their electroactivities follow the order: PANI(15)‐Ag31Co69/Ti>Ag31Co69/Ti>PANI(20)‐den‐Ag/Ti>den‐Ag/Ti. Among them, PANI(15)‐Ag31Co69/Ti displays the highest electrocatalytic activity for ORR with a much positive onset potential of 0 V (vs. Ag/AgCl) and a high ORR current density of 1.2 mA cm?2 at ?0.12 V (vs. Ag/AgCl). The electrocatalysts are electrochemically insensitive to methanol and ethanol oxidation, and, as cathode electrocatalysts of direct alcohol fuel cells, can resist poisoning by the possible alcohol crossover from the anode.  相似文献   

8.
Syntheses and single crystal X‐ray structure determinations are recorded for a number of normal and ‘acid’ salts of bis(2‐pyridylamine), ‘dpa’, with univalent anions, X, variously hydrated, i.e. [dpaH]X·nH2O, and [dpaH]X·HX·nH2O. The ‘normal’ salt arrays so characterized are for X = Br? (n = 2, isomorphous with the previously described chloride compound) and, I?, ClO4?, ‘tca?’ (≡ Cl3CCO2)? (all n = 1); acid salt arrays are described for X = NO3? and tca (both n = 0). In all cases except those of X = ClO4?, NO3?, there is one independent formula unit devoid of crystallographic symmetry comprising the asymmetric unit of the structure. In all cases, the proton associated with the cation is ‘chelated’ by the pair of ring nitrogen atoms, disposed ‘endo’; in the tca adducts and the nitrate salt, the total cation is disordered in each case by inversion about a real or putative inversion centre between the rings. In the perchlorate compound, the (ordered) cation lies on a crystallographic 2‐axis, as does the water molecule, and the perchlorate ion, which is disordered about such an axis; in the nitrate compound, the acid hydrogen atom is modelled as disposed on a crystallographic inversion centre between a pair of symmetry‐related nitrate groups, containing, like the Htca adduct, the [XHX]? moiety rather than a diprotonated cation.  相似文献   

9.
Three‐dimensional porous platinum (Ptpor) films are prepared based on Pt electrodeposition on polyaniline (PANI) modified electrodes followed by selective dissolution of PANI with HNO3. Electrochemical quartz crystal microbalance data suggest that the PANI‐H2PtCl6 interaction involves redox and coordination reactions, depending on the working potential. The Ptpor shows better electrocatalytic performance than the Pt/PANI and conventionally electrodeposited Pt. The Ptpor modified glassy carbon electrode (GCE) can electrocatalyze the oxidation of H2O2 with a sensitivity of 414 µA cm?2 mM?1 and a detection limit of 9 nM, and the chitosan‐glucose oxidase/Ptpor/GCE can sense glucose with a sensitivity of 93.4 µA cm?2 mM?1.  相似文献   

10.
Peroxynitrates (RO2NO2), in particular acyl peroxynitrates (R = R′C(O) with R′ = alkyl), are prominent constituents of polluted air. In this work, a systematic study on the thermal decomposition rate constants of the first five members of the series of homologous R′C(O)O2NO2 with R′ = CH3 ( =PAN), C2H5, n‐C3H7, n‐C4H9, and n‐C5H11 is undertaken to verify the conclusions from previous laboratory data (Grosjean et al., Environ. Sci. Technol. 1994, 28, 1099–1105; Grosjean et al., Environ. Sci. Technol. 1996, 30, 1038–1047; Bossmeyer et al., Geophys. Res. Lett. 2006, 33, L18810) that the longer chain peroxynitrates may be considerably more stable than PAN. Experiments are performed in a temperature‐controlled, evacuable 200 L‐photoreactor made from quartz. n‐Acyl peroxynitrates are generated by stationary photolysis of mixtures of molecular bromine, O2, NO2, and the corresponding parent aldehydes, highly diluted in N2. Thermal decomposition of R′C(O)O2NO2 is initiated by the addition of an excess of NO. First‐order decomposition rate constants k1 of the reactions R′C(O)O2NO2 (+M) → R′C(O)O2 + NO2 (+M) are derived at 298 K and a total pressure of 1 bar from the measured loss rates of R′C(O)O2NO2, correcting for wall loss of R′C(O)O2NO2 and several percentages of reformation of R′C(O)O2NO2 by the reaction of R′C(O)O2 radicals with NO2. With increasing chain length of R′, k1(298 K) slightly decreases from 4.4 × 10?4 s?1 (R′ = CH3) to 3.7 × 10?4 s?1 (R′ = C2H5), leveling off at (3.4 ± 0.1) × 10?4 s?1 for R′ = n‐C3H7, n‐C4H9, and n‐C5H11. Temperature dependencies of k1 were measured for CH3C(O)O2NO2 and n‐C5H11C(O)O2NO2 in the temperature range 289–308 K, resulting in the same activation energy within the statistical error limits (2σ) of 0.9 and 1.5 kJ mol?1, respectively. A few experiments on n‐C6H13C(O)O2NO2, n‐C7H15C(O)O2NO2, and n‐C8H17C(O)O2NO2 were also performed, but the results were considered to be unreliable due to strong wall loss of the peroxynitrate and possible complications caused by radical‐sinitiated side reactions.  相似文献   

11.
Hydrothermal reactions of tridentate rigid 2,4,6‐tris‐(benzimidazolyl‐2‐yl)pyridine (pytbzim) ligand and Zn(II)/Cd(II) salts generate binuclear complexes {[Cd2Cl2(pytbzim)2(H2O)2]·2NO3}n ( 1 ) and two isomorphs {[M2Cl2(pytbzim)2(H2O)2]Cl2·2H2O}n [M=Cd ( 2 ), Zn ( 3 )]. All complexes include [M2Cl2(pytbzim)2(H2O)2] dimers, which are further connected into a three‐dimensional supramolecular networks through ?‐? stacking interaction and hydrogen bonds. The solid state photoluminescent studies reveal good fluorescent properties of the pytbzim ligand and complexes 1 – 2 at room temperature.  相似文献   

12.
Single crystals of {[Cu(TO)2(H2O)2](NO3)2}n (TO: 1, 2, 4‐triazol‐5‐one) were grown by slow evaporation from aqueous solution. It crystallizes in the orthorhombic space group Pbca, with a = 7.082(1), b = 10.285(1), c = 17.911(3)Å, V = 1304.6(3)Å3, Z = 4. The CuII distorted octahedra are bridged by bidentate TO ligands into infinite 2‐D interlaced rhombic grid‐like network planes, {[Cu(TO)2(H2O)2]2+}n. Hydrogen bonds, electrostatic interactions, and weak van der Waals' forces assemble these planes and the NO3 anions to a layered structure. The title compound decomposes at 153.4 °C to the final products, Cu(CN)2 and CuO.  相似文献   

13.
Four crystal structures of 2‐amino‐N‐(dimethylphenoxyethyl)propan‐1‐ol derivatives, characterized by X‐ray diffraction analysis, are reported. The free base (R,S)‐2‐amino‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]propan‐1‐ol, C13H21NO2, 1 , crystallizes in the space group P21/n, with two independent molecules in the asymmetric unit. The hydrochloride, (S)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium chloride, C13H22NO2+·Cl?, 2c , crystallizes in the space group P21, with one cation and one chloride anion in the asymmetric unit. The asymmetric unit of two salts of 2‐picolinic acid, namely, (R,S)‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 1p , and (R)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 2p , consists of one cation and one 2‐picolinate anion. Salt 1p crystallizes in the triclinic centrosymmetric space group P, while salt 2p crystallizes in the space group P41212. The conformations of the amine fragments are contrasted and that of 2p is found to have an unusual antiperiplanar arrangement about the ether group. The crystal packing of 1 and 2c is dominated by hydrogen‐bonded chains, while the structures of the 2‐picolinate salts have hydrogen‐bonded rings as the major features. In both salts with 2‐picolinic acid, the specific R12(5) hydrogen‐bonding motif is observed. Structural studies have been enriched by the generation of fingerprint plots derived from Hirshfeld surfaces.  相似文献   

14.
The hydrothermal reaction of Cd(NO3) · 4H2O with 4,4′‐bipyridine (bipy) and 3‐carboxyphenoxyacetatic acid (3‐H2CPOA) afforded a 3D metal‐organic framework (MOF) [Cd(3‐CPOA)(bipy)]n · 3.5nH2O, which was characterized by elemental analyses, IR spectroscopy, thermogravimetric analyses, and X‐ray diffraction. The single‐crystal structural analysis revealed that it has a Cds‐type topological network with 1D channels that contain encapsulated water molecular tapes.  相似文献   

15.
Semicarbazones can exist in two tautomeric forms. In the solid state, they are found in the keto form. This work presents the synthesis, structures and spectroscopic characterization (IR and NMR spectroscopy) of four such compounds, namely the neutral molecule 4‐phenyl‐1‐[phenyl(pyridin‐2‐yl)methylidene]semicarbazide, C19H16N4O, (I), abbreviated as HBzPyS, and three different hydrated salts, namely the chloride dihydrate, C19H17N4O+·Cl?·2H2O, (II), the nitrate dihydrate, C19H17N4O+·NO3?·2H2O, (III), and the thiocyanate 2.5‐hydrate, C19H17N4O+·SCN?·2.5H2O, (IV), of 2‐[phenyl({[(phenylcarbamoyl)amino]imino})methyl]pyridinium, abbreviated as [H2BzPyS]+·X?·nH2O, with X = Cl? and n = 2 for (II), X = NO3? and n = 2 for (III), and X = SCN? and n = 2.5 for (IV), showing the influence of the anionic form in the intermolecular interactions. Water molecules and counter‐ions (chloride or nitrate) are involved in the formation of a two‐dimensional arrangement by the establishment of hydrogen bonds with the N—H groups of the cation, stabilizing the E isomers in the solid state. The neutral HBzPyS molecule crystallized as the E isomer due to the existence of weak π–π interactions between pairs of molecules. The calculated IR spectrum of the hydrated [H2BzPyS]+ cation is in good agreement with the experimental results.  相似文献   

16.
Reactions of Cd(NO3)2 · 4H2O with 2‐quinolinecarboxylic acid (H‐QLC) in the presence of 1,4‐benzenedicarboxylic acid (H2‐BDC) or 1,3,5‐benzenetricarboxylic acid (H‐BTC) in DMF/H2O solvent afforded two compounds, namely, [Cd(QLC)(BDC)1/2(H2O)]n ( 1 ) and [Cd(QLC)(BTC)1/3]n ( 2 ). Both compounds are two‐dimensional (2D) frameworks but feature different cadmium‐carboxylate clusters as a result of the presence of the polycarboxylate ligands with different geometries and coordination preference. The dinuclear Cd2(QLC)2 units in 1 are bridged by the pairs of bridging water ligands to give a one‐dimensional (1D) chain, which is further linked by the second ligand of BDC2– to form a 2D structure. Compound 2 is constructed from unique hexanuclear macrometallacyclic Cd6(QLC)6 clusters, which are linked by the surrounding BTC3– ligands to generate a 2D structure. Photoluminescence studies showed both compounds exhibit ligand‐centered luminescent emissions with emission maxima at 405 and 401 nm, respectively.  相似文献   

17.
A clean and efficient tandem oxidative cyclocondensation process is reported for the synthesis of 3,4‐dihydropyrimidin‐2(1H)‐one or ‐thione derivatives from primary aryl alcohols, β‐keto esters, and urea or thiourea in the presence of Al(NO3)3?9 H2O as oxidant catalyst (Scheme, Table 5).  相似文献   

18.
Two different one‐dimensional supramolecular chains with CoII cations have been synthesized based on the semi‐rigid ligand 2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline (L), obtained by condensation of 2‐(1H‐benzimidazol‐2‐yl)quinoline and 4‐(chloromethyl)pyridine hydrochloride. Starting from different CoII salts, two new compounds have been obtained, viz. catena‐poly[[[dinitratocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] dichloromethane monosolvate acetonitrile monosolvate], {[Co(NO3)2(C22H16N4)]·CH2Cl2·CH3CN}n, (I) and catena‐poly[[[dichloridocobalt(II)]‐μ‐2‐[1‐(pyridin‐4‐ylmethyl)‐1H‐benzimidazol‐2‐yl]quinoline] methanol disolvate], {[CoCl2(C22H16N4)]·2CH3OH}n, (II). In (I), the CoII centres lie in a distorted octahedral [CoN3O3] coordination environment. {Co(NO3)2L}n units form one‐dimensional helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π interactions to form a two‐dimensional sheet, and another type of π–π interaction further connects neighbouring sheets into a three‐dimensional framework with hexagonal channels, in which the acetonitrile molecules and disordered dichloromethane molecules are located. In (II), the CoII centres lie in a distorted trigonal–bipyramidal [CoCl2N3] coordination environment. {CoCl2L}n units form one‐dimensional chains. The chains interact via C—H...π and C—H...Cl interactions. The result is that two‐dimensional sheets are generated, which are further linked into a three‐dimensional framework via interlayer C—H...Cl interactions. When viewed down the crystallographic b axis, the methanol solvent molecules are located in an orderly manner in wave‐like channels.  相似文献   

19.
A twofold interpenetrating three‐dimensional CdII coordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The asymmetric unit consists of a divalent CdII atom, one 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligand and one fully deprotonated 5‐nitrobenzene‐1,3‐dicarboxylate (NO2‐BDC2−) ligand. The coordination sphere of the CdII atom consists of five O‐donor atoms from three different NO2‐BDC2− ligands and two imidazole N‐donor atoms from two different 1,3‐BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2‐BDC ligand links three CdII atoms via a μ1‐η11 chelating mode and a μ2‐η21 bridging mode. The title compound is a twofold interpenetrating 3,5‐connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.  相似文献   

20.
An effective route to functionalized 2H‐chromene (=2H‐1‐benzopyran) derivatives 4 is described (Scheme 1). This involves the reaction of a 1,1‐diactivated alkene, resulting from the reaction of dimedone (=5,5‐dimethylcyclohexane‐1,3‐dione; 1a ) with methyl chloroglyoxylate (ClC(O)COOMe), benzyl carbonochloridate (ClC(O)OCH2Ph) or 3,5‐dinitrobenzoyl chloride (3,5‐(NO2)2C6H3C(O)Cl), and a dialkyl acetylenedicarboxylate (=dialkyl but‐2‐ynedioate) in the presence of Ph3P which undergo intramolecular Wittig reaction to produce 2H‐chromene derivatives (Scheme 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号