首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In situ generated aryl diazonium cations were synthesized in the electrochemical cell by reaction of the corresponding amines with NaNO2 in aqueous HCl. This paper reports a study of the formation of mixed layers from in situ generated aryl diazonium cations. Firstly, glassy carbon (GC) and gold electrode surfaces were modified with five single in situ generated aryl diazonium salts to obtain their corresponding reductive potential followed by the modification of GC and gold surfaces with eight binary mixed layers of in situ generated aryl diazonium salts. The difference between GC and gold surfaces in terms of in situ formation of two‐component aryl diazonium salt films was compared. The behavior of the mixed layers formed from in situ generated aryl diazonium salts relative to diazonium salts that were pre‐synthesized prior to surface modification was also investigated. Cyclic voltammetry and X‐ray photoelectron spectroscopy were used to characterize the resulting modified GC and gold surfaces. It is found that for some aryl diazonium salts the potential at which reductive adsorption is achieved on gold and GC surfaces is significantly different. For the eight sets of binary mixed layers, the species with more anodic potential are more difficult to attach to the both GC and gold surfaces. The behavior of the mixed layers formed from in situ generated aryl diazonium salts and the pre‐synthesized diazonium salts is similar; which emphasizes the advantage of the in situ approach without any apparent difference in behavior to the presynthesized diazonium salts.  相似文献   

2.
The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.  相似文献   

3.
This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.  相似文献   

4.
The deposition of 4-X phenyl groups (X = NO2, COOH, N-(C2H5)2) on polycrystalline gold electrode was achieved by the electrochemical reduction of the corresponding 4-substituted phenyldiazonium tetrafluoroborate salts in anhydrous acetonitrile media. The electrochemical quartz crystal microbalance measurements evidenced a two-step deposition process: the first one is the deposition of close to a monolayer and the second one is the relatively slower growth of multilayers. In this second region, the deposition is less efficient than for the first one. The electrochemical behavior of the resulting modified gold electrode was investigated in the presence of an electroactive redox probe and these results, together with the electrochemical quartz crystal microbalance data, demonstrated significant differences in reactivity and in deposition efficiency between the diazonium salts. The characterization of the modified electrodes by cyclic voltammetry and electrochemical impedance spectroscopy, as well as X-ray photoelectron spectroscopy measurements, showed that the formation of multilayers is possible and that a significant fraction of the deposited material remained at the electrode surface, even following ultrasonic treatment. The X-ray photoelectron spectroscopy data indicate that the existence of Au-C and Au-N=N-C linkages (where C represents a carbon atom of the phenyl group) is uncertain. Nonetheless, the deposition of the aryl groups by electrochemical reduction of diazonium cations yielded a film that adheres well to the gold surface and the deposited organic film hindered gold oxides formation in acidic medium.  相似文献   

5.

Abstract  

The derivatization of a glassy carbon electrode surface was achieved with and without electrochemical reduction of various diazonium salts in acetonitrile solutions. The surfaces were characterized, before and after their attachment, by cyclic voltammetry and electrochemical impedance spectroscopy to evidence the formation of a coating on the carbon surface. The results were indicative of the presence of substituted phenyl groups on the investigated surface. Also, the effects of diazonium thin films at the surface of a glassy carbon electrode, modification time, and salt concentration on their electrochemical responses in the presence of the Fe(CN)63−/4− probe were investigated. Electrochemical impedance measurements indicated that the kinetics of electron transfer is slowed down when the time and the concentration used to modify the glassy carbon electrode are increased. We therefore modified a glassy carbon surface via its derivatization with and without electrochemical reduction of various diazonium salts in acetonitrile solution.  相似文献   

6.
The growth of covalently bonded nitrophenyl layers on atomically smooth boron-doped single-crystalline diamond surfaces is characterized using cyclic voltammetric attachment and constant-potential grafting by electrochemical reduction of aryl diazonium salts. We apply atomic force microscopy (AFM) in contact mode to remove phenyl layers and measure phenyl layer thicknesses by oscillatory AFM. Angle-resolved X-ray photoelectron spectroscopy is applied to reveal the bonding arrangement of phenyl molecules, and transient current measurements during the grafting are used to investigate the dynamics of chemical bonding. Nitrophenyl groups at an initial stage of attachment grow three-dimensional (3D), forming layers of varying heights and densities. Layer thicknesses of up to 80 A are detected for cyclic voltammetry attachment after five cycles, whereas the layer becomes denser and only about 25 A thick in the case of constant-potential attachment. No monomolecular closed layer can be detected. The data are discussed taking into account established growth models. Redox systems such as Fe(CN)63-/4- and Ru(NH3)62+/3+ are used to probe the electrochemical barrier properties of nitrophenyl groups grafted onto diamond.  相似文献   

7.
The electrochemical properties of Au electrodes grafted with 4-nitrophenyl and 4-decylphenyl groups have been studied. The electrografting of gold electrode surface with aryl groups was carried out by electroreduction of the corresponding diazonium salts in acetonitrile. The nitrophenyl film growth on gold was examined by atomic force microscopy, electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy. These measurements showed that a multilayer film of nitrophenyl groups was formed. Cyclic voltammetry was used to study the blocking properties of aryl-modified gold electrodes towards the Fe(CN)63−/4− redox system. The reduction of oxygen was strongly suppressed on these electrodes as evidenced by the rotating disc electrode results.  相似文献   

8.
4‐Nitrophenyl layers were grafted on gold and glassy carbon surfaces by electrochemical reductive adsorption of the corresponding diazonium salt. Electrochemical conversion efficiencies of 4‐nitrophenyl moieties to 4‐aminophenyl moieties on gold versus on glassy carbon in a protic medium were investigated using X‐ray photoelectron spectroscopy (XPS). In total contrast to all previous comparative studies showing greater electrochemical reactivity of aryl diazonium salt‐derived layers on gold than on glassy carbon, a much lower rate of conversion to 4‐aminophenyl was observed on gold than on glassy carbon by both cyclic voltammetry (CV) and chronoamperometry (CA) methods. The lower electron transfer rate during conversion observed on gold versus glassy carbon was proposed to be due to a mechanism related to the molecular structure rearrangement of 4‐nitrophenyl during the process on glassy carbon. However, whilst complete conversion of 4‐nitrophenyl to 4‐aminophenyl on gold by chronoamperometry was achieved, on glassy carbon complete reduction could not be achieved under the same conditions.  相似文献   

9.
The surface functionalization of ultrananocrystalline diamond (UNCD) thin films via the electrochemical reduction of aryl diazonium cations is described. The one-electron-transfer reaction leads to the formation of solution-based aryl radicals, which in turn react with the UNCD surface forming stable covalent C-C bonds. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), ac impedance spectroscopy, and contact angle measurements have been employed to characterize the organic overlayer and estimate the surface coverage. The grafting of 3,5-dichlorophenyl groups renders the UNCD surface hydrophobic, whereas the attachment of 4-aminophenyl groups makes the surface relatively hydrophilic. The surface coverage, estimated from the electrochemical and XPS measurements, is as high as 70% of a compact monolayer. The aminophenyl terminated surface was obtained by electrochemical reduction of the tethered nitrophenyl groups. This two-step approach yields a UNCD surface with functional moieties available for the potential covalent coupling of a wide variety of biomolecules (e.g., DNA and proteins).  相似文献   

10.
We report the formation of carbon surfaces patterned at the nanoscale with organic functionalities. Thin (<10 nm) films are covalently grafted to the surface via the electrochemical reduction of aryl diazonium salts. Areas of the film are removed with an AFM tip, and a second modifier is electrochemically grafted to the exposed surface. The pattern can incorporate different chemical functionalities, or alternatively topographical patterns can be assembled, where the same functionality is present throughout the pattern.  相似文献   

11.
The derivatization of a glassy carbon electrode surface was achieved by electrochemical reduction of several in situ generated diazonium cations. The diazonium cations were synthesized in the electrochemical cell by reaction of the corresponding amines with NaNO2 in aqueous HCl. The versatility of the method was demonstrated by using six diazonium cations. This deposition method, which involves simple reagents and does not require the isolation and purification of the diazonium salt, enabled the grafting of covalently bounded layers which exhibited properties very similar to those of layers obtained by the classical derivatization method involving isolated diazonium salt dissolved in acetonitrile or aqueous acid solution. Cyclic voltammetry and electrochemical impedance spectroscopy carried out in aqueous solutions containing electroactive redox probe molecules such as Fe(CN)6(3-/4-) and Ru(NH3)6(3+) confirmed the barrier properties of the deposited layers. The chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 3 x 10(-10) to 6 x 10(-10) mol cm(-2) was estimated for films grown in our experimental conditions.  相似文献   

12.
The facile deposition of para-substituted aryl films onto indium-tin oxide (ITO) electrodes by the electrochemical reduction of aryl diazonium salts in acetonitrile is reported. For the deposition conditions used in this report, the aryl film thicknesses are on the order of 1-6 nm, suggesting a multilayer structure. Regardless of the functional group on the aryl diazonium cation, (NO(2), CO(2)H, or fluorene) the electrodeposition behavior onto ITO electrodes is similar to that seen on other electrode materials. XPS and UV-vis data support the introduction of organic functional surface groups to ITO. The blocking behavior of the aryl films on ITO toward the Ru(NH(3))(6)(3+/2+) redox couple is in agreement with electron transfer through conjugated organic layers. The facile preparation of patterned aryl films with regular-spaced 700 nm voids on ITO is also described. Atomic force microscopy and scanning surface potential microscopy on patterned NO(2) aryl films are used to assess the molecular structure and orientation. A 100 mV decrease in the contact potential over NO(2) aryl films relative to bare ITO suggests that the aryl films are loosely structured as deposited with the NO(2) groups oriented at a small angle away from the ITO surface.  相似文献   

13.
A three‐component Pd‐catalyzed coupling of ynamides, aryl diazonium salts, and aryl boronic acids for the synthesis of novel triaryl‐substituted enamides is described. This transformation represents the first example of an umpolung regioselective unsymmetrical syn‐1,2‐diarylation/aryl‐olefination of ynamides. The aryl moieties of the diazonium salt (electrophile) and boronic acid (nucleophile) are explicitly incorporated in the electrophilic α‐ and nucleophilic β‐position, respectively, of the ynamide, resulting in a single isomer of the N‐bearing tetrasubstituted olefin. The scope is broad (68 examples), showing excellent functional‐group tolerance. DFT calculations substantiate the rationale of the mechanistic cycle and the regioselectivity. The chemoselectivity and synthetic potential of the enamide products were also studied.  相似文献   

14.
A novel protocol for immobilization of horseradish peroxidase (HRP) onto diazonium functionalized screen‐printed gold electrode (SPGE) has been successfully developed. This protocol involved 1) electrochemical reduction of p‐nitrophenyl diazonium salts synthesized in situ in acidic aqueous solution to graft a layer of p‐nitrophenyl on SPGE, 2) electrochemical reduction of the nitro groups to convert to amines, 3) chemical reaction with nitrous acid to transform the amine to diazonium derivative and 4) chemical coupling of the enzyme with the diazonium group to form a covalent diazo bond. The fabricated biosensor showed the direct electrochemistry of HRP and displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediator. The biosensor exhibited fast amperometric response to H2O2. The catalytic current increased with increasing H2O2 concentration from 5 μM to 30 μM and the detection limit of the biosensor was 2 μM. The biosensor exhibited acceptable sensitivity, good reproducibility and long‐term stability.  相似文献   

15.
A new versatile method has been developed for the electrochemically assisted grafting of carbon materials. The approach is based on the reduction of iodonium salts and allows the immobilization not only of aryl groups, such as phenyl or nitrophenyl, but also of alkynyl groups under mild conditions. In particular, the immobilization of alkynyl groups is important because such grafting cannot be accomplished using any other known reductive procedure. The electrochemical properties of the grafted surfaces with estimated coverages of (4-6) x 10(-)(10) mol cm(-)(2) are investigated against the ferrocene and Fe(CN)(6)(3)(-) solution probes. The analysis of the surfaces is carried out by means of cyclic voltammetry and X-ray photoelectron spectroscopy.  相似文献   

16.
Miniaturized planar back‐side contact transducers (BSC) with chemically modified gold surface have been utilized as electrochemical sensors. The electrodes have been functionalized by sequential immobilization of aryl diazonium salts or alkanethiols and short peptide Gly‐Gly‐His. The applicability of gold substrates modified with aryl diazonium salts in voltammetric detection of copper(II) ions in aqueous solutions has been studied. The combination of two fundamental elements of the solid‐state electrode, i.e. back‐side contact (BSC) gold sensor and self‐assembled monolayers, allowed one to obtain reliable miniaturized copper(II) ion sensors. It can have important future applications in environmental sensing or in implantable biodevices.  相似文献   

17.
This paper reports on the preparation of poly(methyl methacrylate) (PMMA), poly(n-butyl acrylate) (PBA), and polystyrene (PS) brushes at the surface of conducting materials that were modified by the electrochemical reduction of a brominated aryl diazonium salt BF4-, +N2-C6H4-CH(CH3)-Br (D1). The grafted organic species -C6H4-CH(CH3)-Br was found to be very effective in initiating atom transfer radical polymerization (ATRP) of vinyl monomers. This novel approach combining diazonium salts and ATRP allowed PMMA, PBA, and PS brushes to be grown from the surface of iron electrodes. The polymer films were characterized in terms of their chemical structure by infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. Atomic force microscopy studies indicated that the polymer brushes are densely packed. Contact angle measurements of water drops on PS and PMMA brushes were 88.1 +/- 2.0 and 70.3 +/- 2.1 degrees, respectively, which is consistent with the published wettability data for the corresponding polymer sheets.  相似文献   

18.
This critical review summarizes existing knowledge on the use of diazonium salts as a new generation of surface modifiers and coupling agents for binding synthetic polymers, biomacromolecules, and nanoparticles to surfaces. Polymer grafts can be directly grown at surfaces through the so-called grafting from approaches based on several polymerization methods but can also be pre-formed in solution and then grafted to surfaces through grafting onto strategies including "click" reactions. Several routes are also described for binding biomacromolecules through aryl layers in view of developing biosensors and protein arrays, while the use of aryl diazonium coupling agents is extended to the attachment of nanoparticles. Patents and industrial applications of the surface chemistry of diazonium compounds are covered. This review stresses the paramount role of aryl diazonium coupling agents in adhesion, surface and materials sciences (114 references).  相似文献   

19.
This study presents thioether construction involving alkyl/aryl thiosulfates and diazonium salt catalyzed by visible‐light‐excited [Ru(bpy)3Cl2] at room temperature in 44–86 % yield. Electron paramagnetic resonance studies found that thiosulfate radical formation was promoted by K2CO3. Conversely, radicals generated from BnSH or BnSSBn (Bn=benzyl) were clearly suppressed, demonstrating the special property of thiosulfate in this system. Transient absorption spectra confirmed the electron‐transfer process between [Ru(bpy)3Cl2] and 4‐MeO‐phenyl diazonium salt, which occurred with a rate constant of 1.69×109 M ?1 s?1. The corresponding radical trapping product was confirmed by X‐ray diffraction. The full reaction mechanism was determined together with emission quenching data. Furthermore, this system efficiently avoided the over‐oxidation of sulfide caused by H2O in the photoexcited system containing Ru2+. Both aryl and heteroaryl diazonium salts with various electronic properties were investigated for synthetic compatibility. Both alkyl‐ and aryl‐substituted thiosulfates could be used as substrates. Notably, pharmaceutical derivatives afforded late‐stage sulfuration smoothly under mild conditions.  相似文献   

20.
The surface chemistry of aryl diazonium salts has progressed at a remarkable pace in the last two decades, and opened many avenues in materials science. These compounds are excellent coupling agents for polymers to surfaces via several surface‐confined polymerization methods. For the first time, we demonstrate that diazonium salts are efficient for surface initiating radical photopolymerization in the visible light of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) taken as model monomers. To do so, 4‐(dimethylamino)benzenediazonium salt was electroreduced on gold plates or flexible ITO sheets to provide 4‐(dimethylamino)phenyl (DMA) hydrogen donor layers; while excited state camphorquinone acted as the free hydrogen abstractor. In the same way, we co‐polymerized HEMA and MMA with ethylene glycol dimethacrylate in order to obtain crosslinked polymer grafts. We demonstrate by XPS that gold was efficiently screened by the polymer layers and that the wettability of the surfaces accounts for the hydrophilic or hydrophobic characters of the tethered polymers. Homo‐ and crosslinked PMMA grafts were found to resist removal by the paint stripper methyl ethyl ketone. The grafted DMA/camphorquinone system operating in the visible light holds great promises in terms of adhesion of in situ designed continuous or patterned polymer coatings on various substrates. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3506–3515  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号