首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
The hydrocarbon precursor, 8,16-dihydro-syn-1,6;9,14-bismethano[cd,gh]pentalene (5), to the title structure, dianion 4, was synthesized from ethyl 4-bromo-1,6-methano[10]annulene-3-carboxylate (6) in three steps, which included a nickel-catalyzed stereoselective homo-coupling, LiAlH4 reduction of the ester groups, and scandium triflate-catalyzed double intramolecular cyclization of the biarylmethyldiol. Deprotonation of 5 with n-butyllithium in THF-d8 provided 4, whose structure was confirmed by NMR analysis. Aspects of chemical shifts in the 1H NMR spectrum and the calculated structure of 4 establish its diatropic nature.  相似文献   

2.
(E)-(1,2-Difluoro-1,2-ethenediyl)bis[tributylstannane], 3, readily undergoes a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction with iodotrifluoroethene to yield (E)-octafluoro-1,3,5-hexatriene, 4, in high isomeric purity. (1Z,3E,5Z)-(1,2,3,4,5,6-Hexafluoro-1,3,5-hexenetriyl)bis[tributylstannane], 7, was sequentially prepared from (1Z,3E,5Z)-(1,2,3,4,5,6-hexafluoro-1,3,5-hexenetriyl)bis[triethylsilane], 5, which was prepared via a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction of 3 with (E)-1,2-difluoro-1-iodo-2-triethylsilylethene, 6. Pd(PPh3)4/CuI cross-coupling of 7 with iodotrifluoroethene gave (3E,5E,7E)-dodecafluoro-1,3,5,7,9-decapentaene, 8.  相似文献   

3.
From a poisonous mushroom, Clitocybe acromelalga, a new nucleoside clitidine (1) was isolated as a toxic principle. The structure was deduced to be 1 from spectral data and chemical degradation studies. Synthesis of 1 through condensation of methyl 4-aminonicotinate with 3, 5-di-O-benzoyl-D-ribofuranosyl chloride confirmed the structure, including absolute configuration.  相似文献   

4.
The flowers of Pulicaria laciniata (Coss. et Kral.) Thell. (Asteraceae) afforded a new sesquiterpene acid 1, named lacitemzine together with the three known compounds, 4-hydroxy-3-methoxypyridine 2, β-sitosterol-3-O-β-d-glucoside 3 and 1,3,5-trimethoxybenzene 4. The structure of compound 1, 2-(2,6-dimethyl-3,4,5,6,7,8,9,10-octahydro-5,8-oxaazulen-9-yl)acrylic acid, contains a guaiane skeleton and was elucidated by spectroscopic procedures including 2D-NMR and X-ray diffraction.  相似文献   

5.
Thorsten Lifka 《Tetrahedron》2008,64(27):6551-6560
(E,E)-3,6-Bis(styryl)pyridazines (3a-t) bearing 2, 4 or 6 alkoxy chains were prepared by applying the Siegrist reaction of 3,6-dimethylpyridazine (13) and the corresponding azomethines 10a-t. The transversal dipole moment of these calamitic compounds effects an extremely high tendency for self-organization in thermotropic LC phases (N, SA, SB, SC, SE, SI/F, and Cub). The conjugated core structure represents moreover a chromophore with a high photosensitivity for (E,E)?(E,Z) isomerization reactions: this property makes the compounds interesting for optical imaging and switching techniques.  相似文献   

6.
Attempts to prepare alkaline metal uranyl niobates of composition A1−xUNbO6−x/2 by high-temperature solid-state reactions of A2CO3, U3O8 and Nb2O5 led to pure compounds for x=0 and A=Li (1), Na (2), K (3), Cs (4) and for x=0.5 and A=Rb (5), Cs (6). Single crystals were grown for 1, 3, 4, 5, 6 and for the mixed Na0.92Cs0.08UNbO6 (7) compound. Crystallographic data: 1, monoclinic, P21/c, a=10.3091(11), b=6.4414(10), c=7.5602(5) Å, β=100.65(1), Z=4, R1=0.054 (wR2=0.107); 3, 5 and 7 orthorhombic, Pnma, Z=8, with a=10.307(2), 10.272(4) and 10.432(3) Å, b=7.588(1), 7.628(3) and 7.681(2) Å, c=13.403(2), 13.451(5) and 13.853(4) Å, R1=0.023, 0.046 and 0.036 (wR2=0.058, 0.0106 and 0.088) for 3, 5 and 7, respectively; 6, orthorhombic, Cmcm, Z=8, and a=13.952(3), b=10.607(2) Å, c=7.748(2) Å, R1=0.044 (wR2=0.117).The crystal structure of 1 is characterized by layers of uranophane sheet anion topology parallel to the (100) plane. These layers are formed by the association by edge-sharing of chains of edge-shared UO7 pentagonal bipyramids and chains of corner-shared NbO5 square pyramids alternating along the [010] direction. The Li+ ions are located between two consecutive layers and hold them together; the Li+ ions and two layers constitute a neutral “sandwich” {(UNbO6)-(Li)22+-(UNbO6)}. In this unusual structure, the neutral sandwiches are stacked one above another with no formal chemical bonds between the neutral sandwiches.The homeotypic compounds 3, 5, 6, 7 have open-framework structures built from the association by edge-sharing in two directions of parallel chains of edge-shared UO7 pentagonal bipyramids and ribbons of two edge-shared NbO6 octahedra further linked by corners. In 3, 5 and 7, the mono-dimensional large tunnels created in the [001] direction by this arrangement can be considered as the association by rectangular faces of two columns of triangular face-shared trigonal prisms of uranyl oxygens. In 3 and 7, all the trigonal prisms are occupied by the alkaline metal, in 5, they are half-occupied. In 6, the polyhedral arrangement is more symmetric and the tunnels created in the [010] direction are built of face-sharing cubes of uranyl oxygens totally occupied by the Cs atoms. This last compound well illustrates the structure-directing effect of the conterion.  相似文献   

7.
A new dipyrroloquinone, zyzzyanone A 1, having a pyrrolo[3,2-f]indole-4,8(1H,7H)-dione skeleton, was isolated from the Australian marine sponge Zyzzya fuliginosa, along with the known pyrroloquinoline alkaloids, makaluvamines C, E, G, H, and L, and damirones A and B. The structure of 1 was determined by spectroscopic data. Zyzzyanone A 1 shows moderate cytotoxic activity against mouse Ehrlich carcinoma cells (IC50 25 μg/mL), inhibits the cell division of fertilized sea urchin eggs at a concentration of 25 μg/mL, and exhibits UV-A and UV-B absorbing activity.  相似文献   

8.
A racemic planar chiral tertiary amine pCp-CH2NMe2 (HL1, pCp = [2.2]paracyclophane-4-yl) was prepared by aminomethylation of the bromide pCp-Br with Eschenmoser’s salt. Direct cyclopalladation of this new ligand with palladium(II) acetate results in the formation of the racemic CN-dimer rac-3 in a moderate yield of 64%. The enantiomerically pure dimer (Spl, Spl)-3 was obtained by the standard procedure of racemic palladacycle resolution using (SC)-prolinate as a chiral derivatising agent. The ortho-palladated structure, absolute configuration of the chiral plane and stereochemical peculiarities of the new CN-palladacycle were established by means of NMR spectroscopy and an X-ray diffraction study of its (SC)-prolinate derivative.  相似文献   

9.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

10.
Chemical investigation of the bark of Calocedrus macrolepis var. formosana, an endemic tree in Taiwan, has led to the isolation of a novel terpenoid 1. Compound 1 with a rare C35 skeleton constructed by a diterpene and a sesquiterpene moieties. Its structure was elucidated by spectroscopic interpretations. The anti-proliferation activity of 1 against human oral epidermoid carcinoma KB cells was evaluated, and the IC50 value was determined to be 9.2 ± 0.4 μM.  相似文献   

11.
Treatment of the chloro-bridged dinuclear complex [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}(μ-Cl)]2 (1) with homobidentate [P,P], [As,As], [N,N], and heterobidentate [P,As], [P,N] ligands in a 1:1 molar ratio gave the dinuclear complexes [{Pd[3,4-(MeO)2C6H2C(H)N(Cy)-C6,N](Cl)}2{μ-L}] (L = Ph2PC4H6(NH)CH2PPh2 (2); Ph2As(CH2)2AsPh2 (3); 1,3-(NH2CH2)2C6H4 (4); Ph2P(CH2)2AsPh2 (5); Ph2P(CH2)2NH2 (6)), with the bidentate ligands bridging the two cyclometallated fragments.The reaction with the homobidentate ligands in a 1:2 molar ratio in the presence of NaClO4 afforded the mononuclear compounds [[Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,P}][ClO4] (L = Ph2PC4H6(NH)CH2PPh2 (7); (o-Tol)2P(CH2)2P(o-Tol)2 (8)), [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2As(CH2)2AsPh2-As,As}][ClO4] (9) and [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-N,N}][ClO4] (L = NH2(CH2)3NH2 (10); NH2(C6H8)CH2(C6H8)NH2 (11); 1,3-(NH2CH2)2C6H4 (12); 1,3-(NH2)2C5H3N (13); NH2(C6H4)O(C6H4)NH2 (14); NMe2(CH2)2NMe2 (15)), in which the chloro ligands are absent and the bidentate ligands are chelated to the palladium atom.Reaction of 1 with Ph2P(CH2)2AsPh2 in 1:2 molar ratio in acetone in the presence of NH4PF6 afforded the analogous mononuclear compound [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)2AsPh2-P,As}][PF6] (16); whereas reaction with Ph2P(CH2)3NH2 gave [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{Ph2P(CH2)3N(CMe2)-P,N}][PF6] (17), derived from intermolecular condensation between the aminophosphine and acetone. Condensation of the NH2 group was precluded by change of solvent, using dichloromethane.Iminophoshines also reacted with 1 in 1:2 molar ratio in acetone to give a new series of mononuclear cyclometallated complexes: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,N}][ClO4] (L = Ph2PC6H4C(H)NCy (20); Ph2PC6H4C(H)NC(CH3)3 (21); Ph2PC6H4C(H)NNMe2 (22); Ph2PC6H4C(H)NNHMe (23); Ph2PC6H4C(H)NNHPh (24)). Analogous complexes with a stable P,O-chelate were obtained using bidentate [P,O] donor ligands: [Pd{3,4-(MeO)2C6H2C(H)N(Cy)-C6,N}{L-P,O}][Cl] (L = 2-(Ph2P)C6H4CHO (25); Ph2PN(Me)C(O)Me (26)).The crystal structures of compounds 1, 5, 15, 16, 18, 20 have been determined by X-ray crystallography.  相似文献   

12.
Bacillamide (1) was isolated as a new algicide against the harmful dinoflagellate, Cochlodinium polykrikoides, from the marine bacterium, Bacillus sp. SY-1, and its structure was elucidated by extensive two-dimensional NMR techniques including 1H-15N HMBC analysis and mass analysis. Bacillamide showed algicidal activity against C. polykrikoides with LC50 of 3.2 μg/ml.  相似文献   

13.
Ming-Guo Liu  Yang-Gen Hu 《Tetrahedron》2008,64(38):9052-9059
Mono(iminophosphorane) 4 was selectively prepared from the reaction of 3,4-diaminothieno[2,3-b]thiophene 3 with excess triphenylphosphine, C2Cl6, and Et3N due to intramolecular double hydrogen bond formation. Mono(iminophosphorane) 4 reacted with aromatic isocyanates to give stable carbodiimides 8, which were further treated with aliphatic secondary or primary amines to give 2-amino substituted thieno[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-ones 10 or 12 in the presence of a catalytic amounts of EtONa+. However, in the presence of a catalytic amounts of potassium carbonate, the carbodiimides 8 were transformed into previously unreported 5H-2,3-dithia-5,7-diaza-cyclopenta[c,d]indenes 13 via direct cyclization in high yields. The reaction of carbodiimides 8 with phenols in the presence of a catalytic amounts of potassium carbonate gave a mixture of 2-aryloxy substituted thieno[3′,2′:4,5]thieno[3,2-d]pyrimidin-4(3H)-ones 14 and 13. X-ray structure analysis of 10m supported the structure and the proposed reactivity of amino group.  相似文献   

14.
Lithiation of 2-dimethylaminoindene followed by quenching with [(R)-(1,1′-binaphthalene-2,2′-diyl)]chlorophosphite and treatment with triethylamine afforded the crystallographically characterized enantiopure P,N-indene 3 in 71% isolated yield. In the course of rhodium coordination chemistry studies involving 3, the formation of the isolable complex [(κ2-P,N-3)(κ1-P,N-3)RhCl] (7) (81%) was observed, thereby confirming the propensity of this new ligand to form LnRh(3)2 complexes. Such coordination chemistry behavior may contribute in part to the generally poor catalytic performance exhibited by mixtures of 3 and rhodium precursor complexes in the asymmetric hydrogenation and hydrosilylation studies described herein.  相似文献   

15.
A new C16N type alkaloid, lycopladine A (1), has been isolated from the club moss Lycopodium complanatum, and the structure and relative stereochemistry of 1 were elucidated on the basis of spectral data.  相似文献   

16.
A straightforward synthesis of (2S)-[3,3-2H2]-proline 1c and (2S,3R)- and (2S,3S)-[3-2H1]-proline, 1b and 1a, respectively, has been devised. The key step of the route to the latter compounds involves highly stereoselective hydrolysis of the silyl enol ethers 3 and 3a, respectively, with protonation (deuteriation) from the re-face of the silyl enol ether.  相似文献   

17.
Readily prepared 2-, 4- and 5-bromo-3-methyl thiazolium triflates react by oxidative substitution with M(PPh3)4 (M = Ni or Pd) to furnish five of the expected normal and abnormal cationic thiazolylidene complexes (1a, 1b, 2a, 2b, and 3b). Carbene complex formation is accompanied by a ca. 40 ppm downfield shift of the α-N carbene carbons in Pd complexes 1 and 2 in their 13C NMR spectra but the chemical shift of C(carbene) in the abnormal3b (δ 135.7) is particularly low. Crystal and molecular structures of complexes 1a, 2b, and 3b all indicate a square planar arrangement of the ligands around the central metal atoms. The new complexes catalyse Suzuki-Miyaura aryl coupling.  相似文献   

18.
The complexes [Rh(CO)(PPh3){Ph2PNP(O)Ph2-P,O}] (3), [Rh(CO)2{Ph2P(Se)NP(Se)Ph2-Se,Se′}] (5), and [Rh(CO)(PPh3){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (6), were synthesised by stepwise reactions of CO and PPh3 with [Rh(cod){Ph2PNP(O)Ph2-P,O}] (2) and [Rh(cod){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (4), respectively. The complexes 3, 5 and 6 have been studied by IR, as well as 1H and 31P NMR spectroscopy. The ν(CO) bands of complexes 3 and 6 appear at approximately 1960 cm−1, indicating high electron density at the RhI centre. The structure of complexes 3 and 6 has been determined by X-ray crystallography, and the 31P NMR chemical shifts have been resolved via low temperature NMR experiments. Both complexes exhibit square planar geometry around the metal centre, with the five-membered ring of complex 3 being almost planar, and the six-membered ring of complex 6 adopting a slightly distorted boat conformation. The C-O bond of the carbonyl ligand is relatively weak in both complexes, due to strong π-back donation from the electron rich RhI centre. The catalytic activity of the complexes 2, 3 and 6 in the hydroformylation of styrene has been investigated. Complexes 2 and 3 showed satisfactory catalytic properties, whereas complex 6 had effectively no catalytic activity.  相似文献   

19.
Acetyl (Ia) and pivaloyl (Ib) triesters of the 1N,3N,5N-trihydroxy-1,3,5-triazin-2,4,6[1H,3H,5H]-trione (I) were synthesised. The spectrophotometric and potentiometric investigation of I revealed a weak acidic properties of triprotonic acid (pKa1=5.23, pKa2=6.32, and pKa3=7.93). The MS and TGA analyses of I indicated on hydroxyisocyanate as possible degradation product. The chelating ability of I with Fe(III)-ion was preliminary explored. IR measurements of aqueous solutions of I in the presence of Fe(III) ion showed the possible chelating ability of all hydroxamic moieties. The chemical structures and properties of investigated compounds were derived from the results of IR, 1H and 13C NMR, UV and MS spectrometric data, as well as thermogravimetric and potentiometric analysis.  相似文献   

20.
The set of starting tri-, di- and monoorganotin(IV) halides containing N,C,N-chelating ligand (LNCN = {1,3-[(CH3)2NCH2]2C6H3}) has been prepared (1-5) and two compounds structurally characterized ([LNCNPh2Sn]+I3 (1c), LNCNSnBr3 (5)) in the solid state. These compounds were reacted with KF with 18-crown-6, NH4F or LCNnBu2SnF to give derivatives containing fluorine atom(s). Triorganotin(IV) fluorides LNCNMe2SnF (2a) and LNCNnBu2SnF (3a) revealed monomeric structural arrangement with covalent Sn-F bond both in the coordinating and non-coordinating solvents, except the behaviour of 3a that was ionized in the methanol solution at low temperature. The products of fluorination of LNCNSnPhCl2 (4) and 5 were described by NMR in solution as the ionic hypervalent fluorostannates or the oligomeric species reacting with chloroform, methanol or moisture to zwitterionic monomeric stannate LNCN(H)+SnF4 (5c), which was confirmed by XRD analysis in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号